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ABSTRACT 
 

Iron is an essential transition metal required by almost all organisms for use as a cofactor 

in many metabolic processes such as respiration and photosynthesis.  Iron can be 

combined with elemental sulfur to form an iron-sulfur (Fe-S) cluster. In bacterial 

pathogens, Fe-S cluster cofactors carry out critical functions and the Fe-S cluster 

biogenesis pathway is essential for their survival. In E. coli, the Suf pathway assembles 

Fe-S clusters under conditions of iron starvation and oxidative stress. While some 

mechanistic details of the Fe-S cluster biogenesis have been well-characterized, the 

process of in vivo iron donation remains unclear. Iron storage proteins generally known 

as ferritins are capable of storing iron in a readily available and soluble form to serve as a 

reservoir of iron for metabolism. We are testing if these iron storage proteins can be in 

vivo iron donors for Suf Fe-S cluster assembly. Our results indicate that the 

bacterioferritin (Bfr) and DNA binding protein of starved cells (Dps) proteins may play 

roles in the in vivo donation to the Suf pathway. Our results also indicate the Ferritin A 

(FtnA) protein does not donate iron to this pathway. We also investigated what role the 

little characterized ferritin B protein may play in this iron donation. We found that the 

deletion of the FtnB and bacterioferritin proteins caused an inability for the strain to make 

Fe-S clusters. We therefore summarize that the three proteins: Bfr, Dps and FtnB donate 

iron to the Suf Fe-S cluster biogenesis pathway and have redundancy in their functions.
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CHAPTER ONE 

Introduction 

1.1 Iron Acquisition and Regulation  

Iron. Iron is the fourth most abundant element in the Earth’s crust, and one of the most 

versatile elements in terms of its biological uses.1 It belongs to the group of elements 

known as “Transition Metals”. In biological systems, iron predominantly exists in one of 

two oxidation states: Fe3+ (ferric), or Fe2+ (ferrous), but can also accommodate other 

oxidation states (+4).2 The ability of iron to accept or donate an electron modulates the 

transition from Fe3+ to Fe2+ or vice versa. This redox chemistry allows iron to have 

fundamental roles in major biological processes including: photosynthesis, nitrogen 

fixation, oxygen transport, gene regulation, DNA synthesis, and citric acid cycle.3 Iron’s 

biological functionality is dependent on its incorporation into iron-sulfur [Fe-S] proteins, 

mono- or binuclear iron proteins, ferritins, hemosiderins, lactoferrins, and transferrins.4-8 

Iron availability in the cell is tightly controlled to prevent the accumulation of reactive 

oxygen species via the Fenton reaction (shown below) 

Fe2+ + H2O2            Fe3+ + -OH + .OH 

Iron Acquisition and Storage. Despite the indispensability of iron, it is also potentially 

toxic due to its tendency to catalyze the formation of toxic reactive oxygen species (ROS)  

(shown above). The Fenton reaction produces the hydroxyl radical (.OH), a ROS capable 

of oxidizing macromolecules and lipids. Therefore, cells must tightly regulate the 
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concentration of Fe to avoid ROS-mediated cell damage.9 

In ancient environments, bacteria had no challenges acquiring ferrous iron (Fe2+) 

for its utilization. Oxygenation of the world challenged bacteria to acquire the insoluble 

ferric iron (Fe3+) which has very low solubility and this lead to bioavailability problems.10 

To overcome this challenge, bacteria evolved with pathways for the solubilization of 

extracellular iron either by reduction or chelation, followed by internalization via specific 

transporters.  In order to acquire iron in iron-limiting environments, bacteria and fungi 

synthesize and secrete low molecular weight compounds, called siderophores which form 

a ferric-siderophore complex with the ferric ions.11-15 These are then taken up via specific 

receptors and shuttled via periplasmic-binding proteins into the inner membrane 

transporters. These transporters ultimately deliver the complexes into the cytoplasm 

where they are dissociated by reduction.16 Cytosolic iron may be deposited in inert forms 

such as ferric oxyhydroxide or ferrihydrite minerals within proteins known as Ferritins. 

This iron storage process requires a ferroxidation step which is catalyzed by specific sites 

within them known as ferroxidase centres.17-18 

 These ferritins can reduce the ferric iron stored and supply it to the cell when iron 

availability is limited. E. coli has 3 main iron storage proteins Ferritin A (FtnA), 

Bacterioferritin (Bfr) and DNA-Binding protein of starved cells (Dps).19-21 

Iron acquisition and storage systems are regulated in response to iron availability. 

This regulation is mediated by Fur (Ferric uptake regulator), a transcriptional repressor 

which forms a Fe2+-Fur complex.22 The Fe2+-Fur complex is a global transcriptional 

regulator involved in the regulation of many iron-dependent metabolic functions in the 
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cell. Fe2+-Fur represses transcription by binding to a 19-bp sequence, designated the “iron 

box,” normally located near the Pribnow box of cognate promoters.1,21,23 Fur can also act 

as a transcriptional activator switching on genes encoding some iron-containing proteins 

including aconitase A, Bfr and FtnA. This activation appears to be to be indirect and 

seems to involve (at least in some cases) Fe2+-Fur repression of a regulatory RNA, RyhB. 

(Figure 1.2) 24-25 

Ferritins. Ferritins constitute a broad superfamily of iron storage proteins that have been 

identified in all forms of life except lactobacilli. Bacterioferritins also belong to this 

ferritin superfamily but are unique to bacteria and contain heme.26 The main function of 

the ferritin family is to sequester intracellular ferric iron in a non-toxic form. Under high 

iron concentrations, ferritins will oxidize Fe2+ to Fe3+ and sequester it as an inert 

ferrihydrite mineral inside the protein core. Under iron limiting conditions, these ferritins 

will release iron upon reduction.27-29  

Ferritins usually consist of homopolymers of 24 subunits for the maxi-ferritins 

(FtnA and Bfr) and 12 subunits for the mini-ferritins (Dps). Usually, individual 

polypeptides are ~20 kD and contain a four-helical bundle motif. They possess internal 

catalytic sites (FtnA and Bfr) or sites at the interface of adjacent subunits (Dps).1, 29, 30 

The subunit structure forms a spherical protein shell and the ferroxidase centers are 

located in the inner surface of the protein. These ferroxidase centers oxidize soluble 

ferrous ions to ferrihydrite mineral in which form iron is stored in these proteins. FtnA 

and Bfr are larger proteins and have 24 subunits and can accommodate up to 4,500 iron 

atoms (Figure 1.3) while Dps which is smaller has 12 subunits and can accommodate 

about 500 iron atoms (Figure 1.4).21 
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E. coli contains at least 5 genes that may play a role in iron storage. These are bfd 

encoding bacterioferritin-associated ferredoxin (Bfd), bfr encoding bacterioferritin, dps 

encoding Dps, ftnA encoding ferritin A, and the ftnB encoding a ferritin-like protein FtnB. 

FtnB has not been well characterized and its role as an iron storage protein is still unclear 

because its primary sequence suggests that it lacks the presence of conserved dinuclear 

center ligands required for ferroxidase activity conserved in other ferritins.31  Bfr and 

FtnA have been well characterized to be iron storage proteins while Bfd is required for in 

vivo iron reduction and release from Bfr.32 

The reason why E. coli has multiple iron storage proteins is unknown. FtnA has 

been shown to be involved in the storage of iron during stationary phase and release 

during iron starved conditions. Bfr is an oligomeric protein containing both a binuclear 

iron centre and haem b. The tertiary and quaternary structure of Bfr is very similar to that 

of Ferritin A. The physiological role of Bfr remains slightly uncertain. While it has been 

implicated as the main storage protein in other microorganisms, its role in cells may 

involve more than iron uptake. 

  Dps has been shown to have the ability to bind and physically sequester DNA, 

and during stationary phase forms a highly ordered and stable dps-DNA co-crystal within 

which chromosomal DNA is condensed and protected from diverse damages.33-35 It 

protects DNA from oxidative damage by sequestering intracellular Fe2+ ion and storing it 

in the form of Fe3+ oxyhydroxide mineral, which can be released after reduction. In Dps 

one hydrogen peroxide oxidizes two Fe2+ ions, which prevents hydroxyl radical 

production by the Fenton reaction. Dps also protects the cell from UV and gamma 

irradiation, iron and copper toxicity, thermal stress and acid and base shocks. 36 
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Figure 1.1. Schematic diagram of iron uptake in E. coli   
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Figure 1.2. Fur and RyhB regulation of iron and iron containing proteins. (A) In the 

absence of Fe2+, Fur doesn’t bind to its promoter region; RyhB inhibits synthesis of target 

genes mRNA and causes degradation. (B) In presence of iron, the Fe2+-Fur complex 

binds the Pribnow box, and inhibits RyhB synthesis. The repression of target genes is 

stopped and protein is synthesized. 

 

A 

B 
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Figure 1.3. (A) Crystal structure of apo-Ferritin A from E. coli (PDB entry 4ZTT). 

(B) Crystal structure of apo-bacterioferritin from E. coli (PDB entry 2Y3Q). The 

heme is the grey balls buried in interior of molecule. Oxygen (O2) is the physiological 

oxidant in FtnA and Bfr. 

  

A 

B 

4Fe2+ + 4H+ + O2                4Fe3+ + 2H2O 

(Ferroxidase reaction in FtnA and Bfr) 
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Figure 1.4. Crystal structure of DNA-binding protein of starved cells (DPS) from E. 

coli (PDB entry 5HJH). Hydrogen peroxide (H2O2) is the physiological oxidant in Dps. 

 

 

 

 

 

H2O2 + 2Fe2+                   2Fe3+ + 2H2O                  

(Ferroxidase reaction in Dps) 
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The reason why E. coli has multiple iron storage proteins is unknown. FtnA has 

been shown to be involved in the storage of iron during stationary phase and release 

during iron starved conditions. Bfr has also been implicated as the main iron storage 

protein in other microorganisms. The role of Bfr remains uncertain. Dps has been shown 

to have the ability to bind and physically sequester DNA, and during stationary phase 

forms a highly ordered and stable dps-DNA co-crystal within which chromosomal DNA 

is condensed and protected from diverse damages.33-35 It protects DNA from oxidative 

damage by sequestering intracellular Fe2+ ion and storing it in the form of Fe3+ 

oxyhydroxide mineral, which can be released after reduction. In Dps one hydrogen 

peroxide oxidizes two Fe2+ ions, which prevents hydroxyl radical production by the 

Fenton reaction. Dps also protects the cell from UV and gamma irradiation, iron and 

copper toxicity, thermal stress and acid and base shocks. 36 

The mechanism by which iron is sequestered inside the maxi-ferritins can be 

divided into three distinct steps. The first step involves ferrous iron binding at the 

ferroxidase center. The ferroxidase center is a di-iron binding site composed of conserved 

glutamate and histidine residues although the different types of ferritins contain 

somewhat different arrangements.37-39 The second step involves catalytic oxidation of 

ferrous iron to ferric iron using molecular O2 as the oxidant and the final step involves the 

storage of the ferric iron in its ferric oxyhydroxide mineral inert form. In Dps, the oxidant 

for oxidation of ferrous iron has been shown to be hydrogen peroxide (H2O2). It therefore 

has an extra role in protecting DNA from oxidative damage by consuming H2O2 as it 

sequesters intracellular Fe2+ ion in the form of Fe3+ oxyhydroxide mineral.34 One 

hydrogen peroxide oxidizes two Fe2+ ions, which prevents uncontrolled hydroxyl radical 
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production by the Fenton reaction.9 

Regulation of the ferritin genes is necessary to provide the cell with a balance 

between iron- mediated toxicity and the iron necessary for metabolism. In E. coli, the 

ftnA and bfr genes are regulated using an elegant mechanism under iron replete or iron 

depleted conditions. Both genes are upregulated by the Fur-Fe2+ repressor relaying the 

signal that iron is abundant in the cell. While Bfr is regulated by Fe2+– Fur through the 

regulation of RyhB (Figure 1.2), FtnA is induced by Fur in a mechanism independent of 

it (Figure 1.5). This involves direct interaction of Fe2+–Fur with an ‘extended’ Fur 

binding site located upstream (−83) of the ftnA promoter. In iron poor environments, 

histone-like nucleoid associated protein (H-NS), a direct repressor of ftnA, binds at 

multiple sites upstream of the ftnA promoter and subsequently prevents ftnA transcription. 

When the cell is replete with iron, Fe2+–Fur directly competes with H-NS binding at 

upstream sites and consequently displaces H-NS from the ftnA promoter which in turn 

leads to derepression of ftnA transcription. Fur displacement of H-NS from the upstream 

sites prevents cooperative H-NS binding at the downstream sites within the promoter, 

thus allowing access to RNA polymerase to the ftnA promoter.40 

On the other hand, most iron acquisition genes are negatively regulated by Fur-

Fe2+.22 One such negatively regulated gene is a small RNA called RyhB.26 When Fe2+ 

dissociates from Fur, transcription of ryhB is activated. RyhB targets the mRNA of ftnA, 

bfr, and many [Fe-S] proteins for degradation. This reduces cellular demand for iron 

while also blocking further iron storage in FtnA and Bfr. 

Dps is one of the most abundant proteins in stationary phase and forms biocrystals 

with the chromosomal DNA through nonspecific binding. The ability of Dps to 
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Figure 1.5. FtnA regulation by Fur. Direct interaction of Fe2+–Fur at the Fur binding 

site directly displaces histone-like nucleoid associated protein (H-NS) a ftnA repressor 

and increases its transcription in iron replete environments. 

 

 

Iron Poor Environment 

Iron Replete Environment 



www.manaraa.com

12  

nonspecifically bind DNA and the fact that it uses H2O2 as the oxidant for iron 

mineralization suggests a different oxidative stress defense system whereby the DNA is 

crystallized like eukaryotic chromosomes.  Dps forms bio-crystals with the DNA and 

thus protects it from oxidative stress.  It has also been shown to act as a component of 

several other stress pathways by enhancing bacterial survival of other different stresses 

including heat shock, starvation and over exposure to iron. Unlike the indirect activation 

of ftnA or bfr due to oxidative stress, direct activation of dps can occur in exponential 

phase via oxidized OxyR, a transcriptional activator that responds to H2O2.
41 

1.2. Iron Sulfur Clusters 

Iron-sulfur (Fe-S) clusters are among the most ancient and versatile protein 

cofactors. These clusters consist of iron in the Fe2+ or Fe3+ oxidation states bound to 

sulfide (S2-).42 These clusters are typically ligated to proteins via cysteine residues; 

however, histidine, serine, aspartate, or backbone amides have been also seen to 

coordinate clusters in specific examples.43 Fe-S clusters are essential metal co-factors and 

serve both catalytic and structural roles in a large and diverse group of proteins. They 

have the ability to delocalize electron density over both Fe and S atoms and this makes 

them ideally suited for their primary role in mediating biological electron transport.44 

They are also vital in several other essential central metabolic processes such as redox 

chemistry, enzyme catalysis, and regulating gene expression. The process by which Fe-S 

clusters have to be assembled has to be highly regulated since the reactive oxygen species 

generated as byproducts of aerobic respiration are highly damaging to Fe-S clusters, and 

free iron and free sulfide are toxic to the cell.45-47       

 Different cluster types are named based on the ratios of iron and sulfide that 
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are present in those clusters with the most common being [2Fe-2S], [3Fe-4S] and [4Fe-

4S] clusters (Figure 1.6). Examples of Fe-S containing enzymes in E. coli include 

ferredoxins, hydrogenases, oxygenases and enzymes of the tricarboxylic acid (TCA) 

cycle such as Aconitase A and Aconitase B. 48 

[Fe-S] clusters can be assembled in vitro by adding ferrous iron, sulfide, and a 

reductant to an apo-protein. However, the concentrations of free iron and sulfide required 

for in vitro [Fe- S] cluster assembly are toxic to the cell. A complex Fe-S cluster 

assembly machinery therefore characterizes the formation of Fe-S clusters in vivo.49 

1.3 Iron-Sulfur (Fe-S) Cluster Biogenesis Pathway 

Fe-S cluster biogenesis pathways all follow the same basic principles. The first 

step is the liberation of sulfur by a cysteine desulfurase, which forms a persulfide 

intermediate on a conserved cysteine residue. Iron is donated from a source yet to 

identified and the newly formed nascent cluster is then assembled on scaffold proteins 

with the help of electron donors, which are needed for the reduction of sulfur to sulfide.50 

The fully formed cluster is transferred to apoproteins via chaperones that facilitate the 

correct substrate specificity and proper assembly of the cluster to form the mature 

holoprotein (Figure 1.7). 

Two Fe-S biogenesis pathways have been identified in E. coli; The Isc (Iron 

Sulfur Cluster) pathway and the Suf (mobilization of Sulfur) pathway which was the last 

Fe-S biogenesis pathway to be discovered. All pathways require a cysteine desulfurase 

(designated IscS, SufS) to liberate a persulfide from free L-cysteine.51 Secondly; clusters 

are primarily assembled and transported within a scaffold protein (IscU, SufB, SufU), 
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Figure 1.6. Structure of E. coli hydrogenase-1 in complex with cytochrome b (PDB 

entry 4GD3) 
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Figure 1.7. General Fe-S cluster biogenesis pathway  
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from which they are then transferred to recipient protein either directly or via transport 

proteins (IscA, SufA).52 These different Fe-S cluster biogenesis pathways are sometimes 

found in combination in different microorganisms. In E. coli, the Isc pathway is the 

housekeeping pathway and functions under normal cellular conditions.  

The suf operon functions under conditions of iron starvation and oxidative stress 

to repair or replace damaged Fe-S clusters.53-57 Regulation of suf is mediated by OxyR, 

Fur and IscR.54,58,59 The presence of these global regulators of oxidative stress and iron 

limitation suggest that the function of the suf operon is to activate, protect, or repair [Fe-

S] proteins under those stress conditions. Our lab studies the mechanism of Suf Fe-S 

cluster biogenesis in E. coli and my research focuses on the iron donation to the pathway. 

Iron Sulfur Cluster pathway (Isc pathway). The Isc cluster biogenesis pathway in E. 

coli requires at least 6 proteins in both bacteria and eukaryotes (Figure 1.8). The IscU is 

the scaffold protein where nascent Fe-S clusters are formed. IscU receives sulfur from the 

action of IscS. IscA has been implicated in both being an alternative scaffold protein for 

Fe-S cluster assembly and also in functioning as the iron donor for [Fe-S] cluster 

assembly on IscU.60 This hypothesis is  supported  by the  fact  that  IscA  binds  iron  

very tightly  with  an  apparent  iron association constant of 3.0x1019M in reducing 

conditions.61 Iron-loaded IscA has also been shown experimentally to transfer iron to 

IscU for [Fe-S] cluster assembly under physiologically relevant reducing conditions.62 In 

addition to IscA, eukaryotic frataxin has been implicated as a potential iron donor and 

also an activator. Frataxin/CyaY is a highly conserved protein implicated in Freidreich’s 

ataxia (an incurable ataxia) in humans. S. cerevisiae knockouts of frataxin homolog 

YFH1 have deficiencies in [Fe-S] cluster maturation and increased oxidative stress. 
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Figure 1.8. The Isc pathway (housekeeping) biogenesis operon in E. coli  
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 Recently it has been suggested that CyaY and IscA may exist as dual iron donors 

depending on oxidative stress levels in.63 IscA is believed to be the iron donor for Fe-S 

cluster assembly under physiologically relevant reducing conditions, whereas CyaY is 

thought to mediate Fe-S cluster assembly during periods of enhanced oxidative stress. 

Hydrogen peroxide which induces oxidative stress has been shown to oxidize the thiol 

groups of IscA and thus blocks its iron binding. The carbonyl group of CyaY however, 

remains unaffected by hydrogen peroxide and its iron binding ability is thus retained. The 

fact that both of these protein architectures exist in organisms ranging from bacteria to 

humans implies the importance of having two iron donors for Fe-S cluster biogenesis.64-65 

Heat shock protein A (HscA) and Heat shock protein B (HscB) are two co-

chaperones that are in the Isc pathway. HscA has ATPase activity and selectively 

interacts with scaffold IscU and HscB to simulate transfer of Fe-S cluster from IscU to 

acceptor proteins. HscB facilitates the interaction between HscA and IscU and helps 

serve as a bridge between the two proteins.65-68 

1.4 Sulfur Utilization (Suf) pathway  

Transcriptional Regulation of Suf pathway. The Suf pathway was first identified as 

part of the Fur and OxyR regulons in E. coli. The suf operon encodes sufABCDSE . 

During iron starvation Fur converts to its iron-free (apo) form, which de-represses target 

promoters and facilitates suf repression allowing increased transcription of the suf 

operon.  Oxidative stress activates OxyR, which increases suf transcription in conjunction 

with the DNA-bending protein IHF. IscR, an Fe-S cluster binding transcription factor   

also regulates the isc and suf operons. Apo-IscR binds the suf promoter to activate 
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transcription of the suf operon in response to oxidative stress, iron limitation, and other 

conditions that perturb Fe-S cluster biogenesis by the Isc pathway.  RyhB a small RNA 

molecule also regulates the isc operon.69-71 The expression of RyhB is repressed by Fur-

Fe2+ when iron is replete in the cell.  Under limited iron, apo-Fur loses the ability to bind 

DNA, which releases ryhB repression. The isc mRNA transcript base pairs with RyhB 

causing it to be degraded when iron is limited (Figure 1.9). 

Deletion of the suf pathway in E. coli has been shown to be lethal in conditions of 

iron starvation and oxidative stress.72 

Suf Pathway biogenesis. In E. coli SufA, SufB, SufC, SufD, SufS and SufE form at least 

two stable complexes SufBC2D and SufSE. SufS is a PLP-dependent cysteine desulfurase 

that liberates sulfur from free cysteine molecules resulting in formation of a persulfide. 

SufE, a structural homolog of IscU, accepts the persulfide and releases it in the form of a 

reduced sulfide (S2-) to SufBC₂D for cluster assembly (Figure 1.10). The SufS activity 

has been shown to be enhanced by the action of SufE. This activity has been further 

shown to be enhanced by SufBC2D. This scaffold has also been shown to be resistant to 

oxidative stress. This transfer has also be shown to be protected in the presence of 

reducing agents.73-74  

SufA appears to function as a cluster transfer protein to move intact Fe-S clusters 

from SufBC2D to target metalloproteins. Experimental in vitro studies indicate that SufA 

preferentially binds Free S bound SufBC2D and that the Fe-S transfer is unidirectional 

from SufBC2D to SufA.75-76 SufA has also been shown to bind Fe. SufB is the scaffold 

protein of the Suf pathway. It assembles stable [4Fe-4S] and [2Fe-2S] clusters. SufD  
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Figure 1.9. Transcriptional regulation of the suf operon in E. coli under (A) normal 

and (B) H₂O₂ stress conditions. (A) Fe²⁺  bound Fur represses suf expression under 

normal growth conditions. (B) H₂O₂ stress depresses Fur regulation of suf and apo-IscR 

and OxyR activate suf expression. 
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Figure 1.10. Proposed mechanism of suf [Fe-S] cluster biogenesis  
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paralog of SufB and interacts with SufB and SufC (an ATPase) to form a stable SuBC2D 

complex. Similar to SufB alone, the SuBC2D complex reconstitutes a [4e-4S] cluster in 

vitro. Interactions of SufA and SufE have also been shown to be enhanced when SufB is 

in SufB is in the SuBC2D complex.77  

Studies have also shown that the Fe-S clusters assembled on the complex are 

more resistant to oxidants than the ones assembled on SufB alone. This protected 

environment provides more evidence for a protected Fe-S cluster assembly process by the 

Suf Pathway under oxidative stress conditions. In the absence of SufB, SufD has been 

shown to form a complex with Suf C; SufC2D2. This is however not been shown to act as 

a scaffold for Fe-S cluster biogenesis.77-78  

The source of iron to the suf pathway is still unclear. The labile iron pool may be 

a source of iron to the pathway but the iron will be susceptible to oxidative stress possibly 

depleting the labile iron pool. The iron source must therefore be one that is protected 

under these conditions. A possible source could therefore be a group of iron storage 

proteins known as ferritins that are conserved across all domains of life. 

1.5 Research Aims 

A critical gap in the knowledge of Suf function is in the iron donor source. Our 

hypothesis is the iron would be obtained from a protected source that is resistant to 

oxidative stress (like the persulfide donation). We decided to test if iron storage proteins 

could serve as a potential donor. The overall strategy of this project is to identify and 

characterize mutant strains of E. coli where the cellular iron pools are perturbed, and to 

use genetic and bio-analytical techniques to characterize iron speciation, trafficking, and 
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regulation in intact cells from these strains. These studies also will determine how loss of 

iron storage proteins alters iron utilization for iron cofactor biogenesis 

It’s been proposed that organisms have more than one iron pool in the cell. We 

have chosen to better define the pools of iron that exist in prokaryotic species beginning 

with the well-characterized model organism, E. coli. We analyzed the iron environment 

in the MG1655 strains and that lacking the global iron regulator fur to determine the 

differences in the iron speciation and pools. 

1.6 Biomedical relevance 

Many pathogenic bacteria e.g. Mycobacterium tuberculosis only encode the Suf 

pathway as their iron sulfur cluster assembly machinery. Disruption of this pathway has 

been proven to be lethal to the pathogens.79 Fe-S clusters are incorporated into 

metalloproteins essential to survival of the bacterial cells in the host during infection. 

Human beings lack the Suf pathway and this makes the Suf pathway an attractive drug 

target. The aim of our research is therefore to provide a foundation for this drug 

development. 

A number of human diseases, including Friedreich's ataxia and some 

neurodegenerative disorders, occur as a result of disruption of cellular iron metabolism. 

Further understanding of the iron pools in cells could therefore lead to a better 

management of understanding of these diseases. 
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CHAPTER TWO 

Bfr and Dps may serve as iron donors to the Suf pathway 
 

Abstract 

Iron is an essential transition metal required by almost all organisms for use as a cofactor 

in many metabolic processes such as respiration and photosynthesis.  Iron can be 

combined with elemental sulfur to form an iron-sulfur (Fe-S) cluster. In bacterial 

pathogens, Fe-S cluster cofactors carry out critical functions and the Fe-S cluster 

biogenesis pathway is essential for their survival. In E. coli, the Suf pathway assembles 

Fe-S clusters under conditions of iron starvation and oxidative stress. There has been 

considerable characterization of the sulfide donation to the suf Fe-S pathway; however, 

the process of in vivo iron donation remains unclear. Iron storage proteins generally 

known as ferritins are capable of storing iron in a readily available and soluble form to 

serve as a reservoir of iron for metabolism. We investigate if these iron storage proteins 

can be in vivo iron donors for Suf Fe-S cluster assembly in E. coli. We establish that the 

bacterioferritin (Bfr) and DNA binding protein of starved cells (Dps) may play a role in 

the in vivo donation. Our results also indicate the ferritin A (FtnA) protein does not play a 

role in this iron donation. 
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2.1 Introduction 

Iron is a key cofactor for metalloproteins that perform essential roles in important 

metabolic processes such as electron transport, oxygen transport and oxygen storage.  In 

vivo iron levels have to be regulated carefully because excessive or loosely chelated 

ferrous ion may lead to production of hydroxyl radicals from hydrogen peroxide through 

the Fenton reaction. The cell therefore has specialized proteins for the storage and 

trafficking of iron to limit the release of ferrous iron into the cytoplasm.1-3  

Three main types of iron storage proteins have been found in bacteria. They are 

the ferritins (Ftns), the heme-containing bacterioferritins (Bfr), and the DNA binding 

protein of starved cells (Dps). These have all been determined to play a role in iron 

homeostasis in bacteria.4 These all belong to a broad family of ferritins and generally 

share similar physical characteristics. Their multimeric quaternary structure occurs in 2 

sizes: 24 subunits and 12 subunits and they possess catalytic sites known as ferroxidase 

centers located either within the individual subunits (FtnA and Bfr) or at the interface of 

adjacent subunits (Dps). The subunits assemble into a spherical protein shell and the 

ferroxidase centers are located in the inner surface of the protein shell. These ferroxidase 

centers oxidize soluble ferrous ions to ferrihydrite mineral and that it is the form in which 

the ferric iron that is stored in these proteins.5,6 FtnA, coded by ftnA and Bfr coded by bfr 

are larger proteins and have 24 subunits that can accommodate up to 4,500 iron atoms. 

Also associated with Bfr is Bacterioferritin-associated ferrodoxin Bfd, coded by bfd. Bfd 

facilitates release of iron from Bfr. Dps coded by dps is a mini-ferritin comprising 12 

subunits and can accommodate about 500 iron atoms.7,8 

In E. coli, FtnA has been shown to be involved in the storage of iron during 
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stationary phase and release of iron during iron starved conditions. Bfr has also been 

implicated as the main iron storage protein in other microorganisms but its role remains 

uncertain in E. coli. In E. coli, under iron-replete conditions such as in rich media, about 

25% of the total iron isolated in the soluble protein fraction is found in FtnA, Bfr, and to 

a lesser extent Dps.8 Under high iron conditions the amount of iron specifically 

associated with FtnA increases 10-fold while that sequestered in Bfr and Dps remains 

constant.  Based on these results FtnA is thought to be the primary storage protein for 

excess iron in E. coli.  Dps has the additional ability to bind and physically sequester 

DNA, possibly to limit oxidative DNA cleavage caused by the toxic products of the 

Fenton reaction. Dps binds chromosomal DNA non-specifically, forming a highly 

ordered and stable dps-DNA co-crystal within which chromosomal DNA is condensed 

and protected from diverse damages in stationary phase.9-12 

Iron-sulfur (Fe-S) clusters are critical iron co-factors that are used to carry out 

important metabolic processes in a cell. These Fe-S cluster proteins are widely distributed 

in nature and can be found in all kingdoms of life.13 Examples of these Fe-S proteins 

include enzymes of the electron transport chain such as NADH dehydrogenase and 

coenzyme Q – cytochrome c reductase. The most common forms of Fe-S clusters are the 

rhombic [2Fe-2S] and the cubic [4Fe-4S] clusters.13  

Fe-S clusters must be carefully assembled in vivo because they are sensitive to reactive 

oxygen species.14 Oxidation and degradation of the cluster also releases free ferrous iron 

and sulfide that are toxic to the cell. Fe-S cluster biogenesis pathways have a common set 

of core components. Each pathway consists of a cysteine desulfurase, that donates sulfide 

to the pathway, and a scaffold protein on which transient clusters are assembled and 
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transferred to apo proteins. The Isc pathway is the main Fe-S assembly pathway in E. coli 

under normal conditions.14 The isc operon is composed of eight genes, iscR-iscS-iscU-

iscA-hscB-hscA-fdx-iscX. IscR is a transcriptional regulator of the Isc pathway, IscS is the 

cysteine desulfurase, IscU is a Fe-S cluster scaffold protein, IscA is a Fe-S cluster carrier 

protein, HscA and HscB are molecular chaperones, and Fdx is a ferredoxin that likely 

provides electrons for some step in cluster assembly or trafficking. IscX is a protein 

whose function has not been clearly elucidated but may play a role as a regulator of 

cysteine desulfurase activity.15-16 

The Suf pathway in E. coli is the Fe-S cluster biogenesis pathway during 

environmental stress which includes oxidative stress and iron limited environments.17 

The sulfur donation to the scaffold assembly complex and the Fe-S cluster on the scaffold 

has been proven to be resistant to oxidative stress.18 The iron donation step which hasn’t 

been discovered may also be from a source resistant to oxidative stress, metal poisoning 

and iron starvation. 

Our hypothesis is that iron could be donated from one of the aforementioned iron 

storage proteins to the Suf pathway. In this study, we characterize the relative roles of the 

three main ferritin proteins as possible iron donor sources to the Suf Fe-S cluster 

biogenesis pathway. To test whether the Suf system directly or indirectly accesses iron 

from one or more iron storage proteins in vivo, we constructed a mutant strain with the 

Isc housekeeping pathway inactivated. This mutation ensured that the strain was 

completely dependent on the Suf pathway for its Fe-S cluster biogenesis. Various 

mutants were then constructed by further deleting iron storage proteins either individually 

or in combination in this Isc inactivated background. Our results show that 
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bacterioferritin (Bfr) and DNA binding protein of starved cells (Dps) may play a role in 

the in vivo donation to the Suf pathway.  

2.2 Materials and Methods 

Growth medium and conditions. For bacterial growth, an individual colony was 

transferred from fresh Lennox Broth (LB) agar plates into either LB media or M9 glucose 

minimal media containing 1X M9 minimal salts (Sigma-Aldrich), 0.2%  (w/v) glucose 

(Acros Organics), 0.2% (w/v) magnesium chloride (Sigma-Aldrich) and 0.1mM calcium 

chloride (Sigma-Aldrich). Cultures were grown in LB or M9 minimal media for 18hours 

and 24 hours respectively at 37°C and 200rpm. When necessary, kanamycin (30μg/mL) 

or chloramphenicol (25 μg / mL) was added to the media. For cells grown under various 

iron conditions, different concentrations of ferric citrate were added to the 0.2% glucose 

M9 minimal media. For cell growth curves, the cell growth was monitored by UV-Vis 

absorption at 600nm and plotted versus time in hours. For sensitivity assays, the cells 

were collected, washed in sterile 1 X M9 minimal salts and normalized to a final OD600 of 

0.04 in M9 minimal media with 0.2% (w/v) gluconate (Alfa Aesar) containing varying 

amounts of 2,2-bipyridyl (BIPY) or Phenazine Methosulfate (PMS). Cell density (final 

optical density at 600nm) was measured after 24-hr growth at 37 °C and assays were 

performed in triplicate. 

ICP-MS Analysis: Preparatory cell growth in LB and glucose minimal media was 

conducted as described above. Cells were collected, washed and normalized to a final 

OD600 of 0.04 and grown in gluconate minimal media until they reached the desired 

growth phase. Cells were harvested, centrifuged at 4000 x g  for 20 mins and then 

pelleted three times at 16,000 x g with  intermediate washing in ICP-MS wash solution 
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consisting of 50mM EDTA tetrasodium salt, 100mm Sodium Oxalate, 300 mM NaCl and 

10 mM KCl to remove any cell surface associated metal ions. Washed cell pellets were 

re-suspended in 1 mL 3% NaCl. The OD600 and volume of the cell suspension after the 

last wash was recorded. The re-suspended cells were transferred to an acid-washed, 

Perfluoroalkoxy (PFA) centrifuge tube (Savillex Corporaion) and centrifuged at 16,000 x 

g. After centrifugation, the supernatant was discarded and the cell pellets were frozen in 

liquid nitrogen. Cell pellets were stored at -80₂C until ready for digestion and ICP-MS 

analysis. 

For analysis, cells were thawed for 15 min on ice, and then dried at 80 C for 30 

min. The pellet was then resuspended in 0.3 mL of trace metal grade ultra-pure nitric acid 

and incubated at 70 C for 10hours. 250 µL of the digested solution was transferred to an 

acid washed, 15-mL Trace Metal Grade VWR Falcon Tube and diluted to 5 mL with 

milli-Q H2O to give a final sample solution with an HNO3 matrix of 3.5% before analysis 

using the High Resolution Inductively Coupled Plasma Mass Spectrometer. Blanks 

consisting of 3.5% trace-metal grade HNO3 only in MQ H2O were simultaneously 

prepared in the same way as the samples. Samples were analyzed on a Thermo Element 2 

High Resolution ICP-MS instrument operated by CEMS at the University of South 

Carolina. A cyclonic spray chamber (Elemental Scientific) was used for delivery of 

sample into the instrument.  

Whole cell EPR spectroscopy: A protocol was adapted from the ImLay and Kiley 

Labs19. Cells were grown overnight aerobically in 250 mL of LB before harvesting by 

centrifugation. Cells were collected by centrifugation at 8,000 x g for 20 min at 4°C. The 

pellet was re-suspended using 10 mL of pre-warmed M9 gluconate media supplemented 
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with 10 mM diethylenetriaminepentaacetic acid (DTPA) (Sigma-Aldrich), 20 mM 

desferrioxamine mesylate salt (DFO) (CalBiochem) and incubated for 10 min at 37 °C at 

200 rpm in a 250-mL flask for proper oxygenation. The cells were then centrifuged, 

washed with cold 20 mM Tris-HCl, pH 7.4 and re-suspended in a final volume of 0.5 

volumes (relative to the pellet volume)  of 20 mM Tris-HCl, pH 7.4, 30% glycerol to give 

a final glycerol concentration of approximately 10-15%. A 300-µL volume of the re-

suspended cells was loaded into a 3-mm quartz EPR tube (Norell Incorporated, NC) and 

immediately frozen in liquid N2. A sample of each cell suspension was diluted 200x to 

obtain a final OD600. Samples were stored in liquid N2 until EPR measurements were 

performed. Ferric-DFO standards were prepared over a range from 0 µm to 100 µm 

FeCl3 in 20 mM Tris-HCl, 1 mM DFO, 10% glycerol, pH 7.4. The EPR signals were 

measured with a Bruker EMX X-band spectrometer (Rheinstetten, Germany). EPR 

parameters used were as follows: centerfield: 1564 G; sweep width: 500 G; Temp: 110K, 

Modulation frequency: 100 KHz, Modulation amplitude: 12.5 Gauss, Modulation phase: 

0, Harmonic: 1, Receiver gain: 60, Time constant: 20.4 ms, Field: 301.25-2801.25 Gauss, 

g factor: 4.3, Attenuation: 16, Power: 5mW, number of scans, 10. Fe levels were 

quantified by normalizing the amplitude of the Fe signal of the samples to the Fe-DFO 

standards, and internal concentrations were calculated using the cell density and 

intracellular volume. 

Western Blot Analysis:  Cells were prepared as described above and pelleted at 6,000 x 

g for 20 mins. The pellets were lysed by sonicator or Bacterial Protein Extraction 

Reagent (B-PER) (ThermoScientific) and the protein concentration checked using the 

Bradford assay. Equal total protein amounts were electrophoresed on a 15% SDS PAGE 



www.manaraa.com

39 
 

gel. Proteins were transferred to nitrocellulose membrane and blocked overnight with 

80% Odyssey blocking buffer (Li-Cor) in 1 X TBS (50 mM Tris-HCl pH 8.0, 150 mM 

NaCl) at 4₂C. Primary antibody incubations with α-SufD (1:5000), α-Bfr (1:1000), or α-

FtnA (1:2000) were performed in 40% blocking buffer in 1 X TBST (TBS + 0.001% 

Tween-20).  After 2 hours incubation at room temperature with shaking, membranes were 

washed 5 times (10 min each) with copious amounts of 1 X TBST. Then they were 

incubated with goat α-rabbit secondary antibody (1:20,000) at room temperature with 

shaking for 45 min. Membranes were washed with 1 X TBS and scanned using an 

Odyssey Infrared Imager (Li-Cor). 

Primer extension assay: RNA was extracted from MG1655 and the mutant strains by 

using the acid phenol method. The fepA primer was labeled by [γ-32P] ATP using T4 

polynucleotide kinase (NEB). Primer extension with Superscript II reverse transcriptase 

(Invitrogen) was carried out according to manufacturer instructions. 8 µg of total RNA 

was used as a template for cDNA synthesis. The cDNA products were separated on an 

8% polyacrimide gel. The gel was dried and exposed to CL-XPosure film 

(ThermoScientific). 

Mössbauer Analysis: Cells were initially grown in 35 mL M9 glucose minimal media 

for 24 hours at 37 C at 200 rpm. The overnight culture was then used to inoculate a 1 L 

M9 glucose minimal media supplemented with 10µM and 100 µM 57Fe (III) citrate. 10 

mM 57Fe(III) citrate stock solution was prepared by dissolving 100 mg 57Fe metal powder 

(IsoFlex USA) in 2 mL minimal amount aqua regia which is a 3:1 mixture of trace metal 

grade nitric acid (TMG) to trace metal grade hydrochloric acid (Fischer Scientific) while 

stirring. Once dissolved, the solution was further diluted to a final volume of 100 mL. 
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This stock was then treated with a 3-fold molar excess of sodium citrate (Fisher 

Scientific) while stirring. The solution was adjusted to pH 5 with 1 M NaOH (EMD 

Chemicals) resulting in a final 57Fe concentration of 10 mM. Cells were grown to desired 

growth phase, harvested and centrifuged at 6,000 x g for 20 min. The pellet was washed 

in 40 mL wash solution comprising 50 mM EDTA tetrasodium salt, 100 mM Sodium 

Oxalate, 300 mM NaCl, 10 mM KCl and centrifuged for at 4,000 x g for 20min. The 

wash solution was fully removed from the pellet, washed with MilliQ water, packed into 

Mössbauer cups and immediately frozen in liquid nitrogen prior to analysis.  

Mössbauer spectra were collected at the Texas A&M and analyzed in the Dr. Paul 

Lindahl lab by Joshua Wofford. Mössbauer spectra were recorded on MS4 WRC 4.5 to 

300 K closed-cycle Helium-refrigerated system and a W106 temperature controller) and 

LHe6T spectrometers (SEE Co., Edina, MN), the latter of which is capable of generating 

0–6 T fields. Both were calibrated using α-Fe foil. Spectra was analyzed at 5K and 0.05T 

and the resulting spectra were fitted over different iron species including Non-Heme Fe 

(II), Non Heme Fe (III) and Low Heme Fe fits.  

Atomic Absorption Spectroscopy. Intracellular iron content was calculated using 

atomic absorption spectroscopy (AAS). Cells were grown to desired growth phase in M9 

minimal media and harvested, centrifuged at 4000 x g  for 20 min and then pelleted three 

times at 16,000 x g with  intermediate washing in ICP-MS wash solution consisting of 50 

mM EDTA tetrasodium salt, 100mm Sodium Oxalate, 300 mM NaCl and 10 mM KCl to 

remove any cell surface associated metal ions. Washed cell pellets were re-suspended in 

1 mL 3% NaCl. The OD600 and volume of the cell suspension after the last wash was 

recorded. Cells digested in 300 µL concentrated nitric acid for 10 hours at 70oC and 



www.manaraa.com

41 
 

diluted to get an avid matrix of 3.5% in MilliQ water. Iron standards were prepared in 

MilliQ water. Iron analysis of fractions was performed on a PerkinElmer PinAACle 900T 

graphite furnace atomic absorption spectrometer using the manufacturer’s recommended 

conditions.  

2.3 Results 

Bfr and Dps may act as iron sources to the Suf Pathway during stress conditions. To 

test if any of the ferritins could donate iron to the Suf pathway we first had to construct a 

strain that was wholly dependent on the Suf pathway both during normal housekeeping 

and stress conditions. To do this, we selectively deleted part of the Isc pathway to create 

the ∆iscU-fdx strain (Figure 2.1). The parent ∆iscU-fdx strain thus retains iscR which is a 

global regulator of Fe-S cluster assembly and iscS which donates sulfur to other 

metabolic pathways (Figure 2.1). In this strain, Fe-S cluster assembly by Isc is therefore 

disrupted. In this parent strain, we then deleted individual ferritins alone or in 

combination (Table 2.1).  

We first checked the growths of the mutants in the absence of stress in two types 

of media broth, the complex media Lennox Broth (LB) and the chemically defined M9 

glucose minimal media.  LB is a rich, iron replete complex media containing several 

carbon sources and optimal levels of small molecule metabolites (i.e. amino acids) 

required for proper cellular growth and metabolism.20 In contrast, M9 minimal media is a 

media that is limited for most nutrients and metals. Compared to LB, it lacks its various 

rich nutrients and amino acids and only provides a single, controlled carbon source to 

support growth. Minimal media therefore allows a greater control over which nutrients 

and metals the cells are exposed to. 
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Figure 2.1. The parent ∆iscU-fdx strain. In this strain, all the genes in the genome from 

iscU to fdx have been deleted, effectively rendering the Isc pathway null.  iscR is a 

transcriptional regulator for Suf pathway as its apo form (without [2Fe-2S] cluster) 

activates Suf transcription. iscS has also not been deleted because it serves as a substrate 

for other important cellular functions e.g. Molybdenum cofactor synthesis. 
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Table 2.1 Bacterial Strains utilized in this study 

Strain Relevant Genotype Or Phenotype Reference or Source 

E. coli Strains   

MG1655 Wild Type. E. coli, K12 Laboratory Strain 

∆iscU-fdx ∆iscU-fdx Laboratory Strain 

∆sufA-E ∆sufA-E Laboratory Strain 

∆iscU-fdx_∆bfr::kanᴿ ∆iscU-fdx_∆bfr::kanᴿ 

This Study (R. 

Drevelland unpublished) 

∆iscU-fdx_∆dps::cmᴿ ∆iscU-fdx_∆dps::cmᴿ 

This Study (R. 

Drevelland unpublished) 

∆iscU-fdx_∆ftnA::kanᴿ ∆iscU-fdx_∆ftnA::kanᴿ 

This Study (R. 

Drevelland unpublished) 

BN001 ∆iscU-fdx_∆bfr::kanᴿ_∆dps::cmᴿ This Study 

BN002 ∆iscU-fdx_∆bfr::kanᴿ_∆ftnA::cmᴿ This Study 

BN003 ∆iscU-fdx_∆ftnA::kanᴿ_∆dps::cmᴿ This Study 

BN004 ∆iscU-fdx_∆ftnA_∆dps_∆bfr::kanᴿ This Study 

BN005 ∆bfr::kanᴿ_∆dps::cmᴿ This Study 

∆fur::kanᴿ ∆fur::kanᴿ Laboratory Strain 
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To test whether disruption of iron storage proteins affects sensitivity to iron 

deprivation, varying concentrations of the cell permeable iron chelator 2,2-bipyridyl 

(BIPY) were added to the growth media and the final optical density measured after 24 

hours of growth in M9 gluconate minimal media. Growth on M9 gluconate minimal 

media occurs via the Entner-Duodoroff pathway that requires phosphogluconate 

dehydratase (Edd) which has a [4Fe-4S] cluster.21 Disruption of Suf Fe-S cluster 

biogenesis in the ∆iscU-fdx strains will therefore result in that mutant being sensitive to 

environmental stress in M9 gluconate media. None of the mutations were lethal. 

Individual ∆iscU-fdx strains with only single mutations of bfr, dps or ftnA, did not 

show a marked difference in their sensitivity compared to the MG1655 (wild type) and 

parent ∆iscU-fdx strains (Figure 2.2). As a control, the ∆sufA-E strain where the entire suf 

operon is deleted was included. This strain has been previously shown to be sensitive to 

iron starvation and oxidative stress conditions.17 

Next, we tested if combinations of iron storage mutations would lead to disruption 

of Suf function in the ∆iscU-fdx mutant background. We observed that the ∆iscU-

fdx∆bfr∆dps strain had an extended lag phase compared to the wild-type when pre-grown 

in LB media and transferred to the M9 minimal media even in the absence of stress 

(Figure 2.3) although it grew to a comparable final cell density (Figure 2.3). This 

extended lag phase was reduced by 50% from 8 hours to 4 hours when the ∆iscU-fdx ∆bfr 

∆dps strain was pre-grown in M9 glucose minimal media and transferred to M9 

gluconate minimal media (Figure 2.4). Although this lag phase got reduced in the M9 

minimal media, it was still longer than both the wild-type strain and parent ∆iscU-fdx 

strain.  
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Figure 2.2. Deletion of individual ferritins in the parent ∆iscU-fdx strain does not 

make it sensitive to bipyridyl stress. All strains were grown in LB for 18 hours. After 

this, they were washed and inoculated into fresh M9 gluconate minimal media with 

varying concentrations of BIPY. The final cell density was measured after 24 hours. All 

growths were repeated in triplicate (n=3) and error bars indicate one standard deviation 

from the mean value.  
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Figure 2.3. The ∆iscU-fdx∆bfr∆dps strain shows an extended increase in lag phase 

duration when pre-grown in LB media with no stress. (A) All strains were grown in 

LB for 18 hours and then washed and normalized to the same starting OD600 in fresh M9 

glucose minimal media for 24 hours. Cell density was measured initially every 30 mins 

until they exited lag phase, and then hourly. All growths were repeated in triplicate (n=3) 

and error bars indicate one standard deviation from the mean value. (B) Lag phase and 

doubling time calculated from growth curve in (A)  

  

A 
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We then conducted an iron starvation stress assay when cells were  pre-grown in 

the nutrient and iron rich media (LB media) before being transferred to an iron limiting 

stress media (gluconate media with dipyridyl). This growth assay revealed a marked 

sensitivity in the ∆iscU-fdx∆bfr∆dps strain with this strain being as sensitive to the iron 

chelator as the ∆sufA-E strain (Figure 2.5). This same effect was observed when the 

strains were stressed with the use of phenazine methosulfate (PMS) to induce oxidative 

stress (Figure 2.6).  

To confirm if this phenotype was specific to the Suf system, we did a growth 

assay on a ∆bfr ∆dps mutant that still contains a functional Isc pathway (Figure 2.7). We 

observed that mutant wasn’t sensitive to the iron starvation indicating a specific genetic 

connection between Bfr, Dps and Suf. This result seems to indicate that in the ∆iscU-

fdx∆bfr∆dps strain, the Suf system cannot efficiently perform Fe-S cluster biogenesis 

under stress conditions.  

When the strains were grown first in M9 glucose minimal media before being 

shifted to M9 gluconate minimal media with varying concentrations of 2,2-bipyridyl, the 

∆iscU-fdx∆bfr∆dps strain showed no sensitivity and grew to a final cell density slightly 

higher than the wild-type control strain (Figure 2.8).  This result shows that when those 

strains are pre-adapted to minimal media, they are able to withstand the stress effects 

caused by the presence of the iron-chelator, BIPY. This result was consistent with the 

improved lag phase seen under non-stress growth conditions when the strains were pre 

adapted to minimal media (2.3, 2.4). When iron in the form of ferric citrate was added to 

the sensitive ∆iscU-fdx∆bfr∆dps mutant strain in range of concentrations from 1-10 µM 

concentrations, the pre-incubation of ∆iscU-fdx ∆bfr ∆dps mutant strain with iron caused 
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Figure 2.4. The ∆iscU-fdx∆bfr∆dps strain to shows a less severe lag phase duration 

when pre-grown in minimal media with no stress. (A) All strains were grown in M9 

glucose minimal media for 24 hours and then washed and normalized to same starting 

OD600 in fresh M9 glucose minimal media for 24 hours. Cell density was measured 

hourly. All growths were repeated in triplicate (n=3) and error bars indicate one standard 

deviation from the mean value. (B) Lag phase and doubling time calculated from growth 

curve in (A). 

 

B 
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Figure 2.5. The deletion of both bfr and dps sensitizes the ∆iscU-fdx strain to 

bipyridyl stress. All strains were grown in LB for 18 hours. After this, they were washed 

and inoculated into fresh M9 gluconate minimal media with varying concentrations of 

BIPY. The final cell density was measured after 24 hours. All growths were repeated in 

triplicate (n=3) and error bars indicate one standard deviation from the mean value. 
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Figure 2.6. The deletion of both bfr and dps sensitizes the ∆iscU-fdx strain to 

oxidative stress. All strains were grown in LB for 18 hours. After this, they were washed 

and inoculated into fresh M9 gluconate minimal media with varying concentrations of 

BIPY. The final cell density was measured after 24 hours. All growths were repeated in 

triplicate (n=3) and error bars indicate one standard deviation from the mean value. 
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Figure 2.7. Deletion of Bfr and Dps in the presence of a functional Isc pathway 

rescues sensitive to iron starvation stress. All strains were grown in LB for 18 hours. 

After this, they were washed and inoculated into fresh M9 gluconate minimal media with 

varying concentrations of BIPY. The final cell density was measured after 24 hours. All 

growths were repeated in triplicate (n=3) and error bars indicate one standard deviation 

from the mean value.  
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Figure 2.8 Pre-adaptation to low iron media rescues the sensitivity of the ∆iscU-

fdx∆bfr∆dps strain to bipyridyl.  All strains were grown in M9 glucose minimal media 

for 24 hours. After this, they were washed and inoculated into fresh M9 gluconate 

minimal media with varying concentrations of BIPY. The final cell density was measured 

after 24 hours. All growths were repeated in triplicate (n=3) and error bars indicate one 

standard deviation from the mean value 
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 it to become more sensitive to the iron starvation stress (Figure 2.9). In E. coli, FtnA is 

the main iron storage protein during excess iron conditions. Since the ∆iscU-fdx ∆bfr 

∆dps strain with the highest concentration of added iron (10 µM) became the most 

sensitive under stress conditions, our results suggest that the iron in stored FtnA cannot 

be assessed by the suf pathway.  

The ∆iscU-fdx∆bfr∆dps strain has impaired Fe-S cluster function 

Since growth of the ∆iscU-fdx ∆bfr ∆dps strain is sensitive to 2,2 bipyridyl, we 

tested if this was due to an inability to form Fe-S clusters in vivo. Therefore, cellular iron 

speciation in the mutant and parental strains was examined by whole-cell Mössbauer 

spectroscopy. The strains were grown to mid-log phase (OD600 0.5) in glucose (0.2%) 

M9- salts medium containing 100 µM 57Fe citrate. The cells were washed, cooled rapidly 

to 469 K, and analyzed by Mössbauer spectroscopy at 60 K. The spectrum of the ∆iscU-

fdx parent strain (Figure 2.10) shows a diminished central doublet representing decreased 

[4Fe-4S]2+ clusters and/or Low Spin Heme (LSH) compared to the wild-type strain (from 

about 20% to 5% of total Fe) but is otherwise similar to the wild-type strain.  This result 

is consistent with previous reports that Suf does not fully restore Fe-S cluster biogenesis 

under non-stress conditions when isc is deleted. In the ∆iscU-fdx∆bfr∆dps mutant strain, 

the central doublet mostly representing [4Fe-4S] 2+ or LSH is nearly undetectable 

compared to the other strains indicating that those strains have increased difficulty with 

making iron sulfur clusters (Table 2.2).  

In the strains, it was observed that there existed 2 NHHS Fe-(II) pools. One 

coordinated to oxygen/nitrogen ligands and denoted Fe-(II)A and the other coordinated to 

sulfur ligands and denoted Fe-(II)B. Both pools together make the combined NHHS  
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Figure 2.9 Addition of iron to the pre-stress growth media likely enhances the 

sensitivity of the ∆iscU-fdx∆bfr∆dps strain. ∆iscU-fdx∆bfr∆dps mutant strain was pre-

grown in M9 glucose minimal media with varying concentrations of ferric citrate added 

to its pre-growth. Cells were grown for 24 hours, subsequently washed and inoculated 

into fresh M9 gluconate minimal media with BIPY. 
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Figure 2.10 The ∆iscU-fdx ∆bfr ∆dps strain has virtually no Fe-S cluster assembly 

function. Whole-cell Mössbauer spectroscopy of E. coli strains grown in M9 glucose 

media with 100 µM 57Fe (III)-citrate. Spectra were collected at 5 K, 0.05 T. The purple, 

black, and green lines above the spectrum are simulations of the various spectrum 

components assuming δ=1.28 mm/s, ∆EQ = 2.76 mm/s, 45% area (purple); δ=1.26 mm/s, 

∆EQ = 3.3 mm/s, 30% area (black); and δ = 0.44 mm/s, ∆EQ = 1.05 mm/s, 25% area 

(green). The Fe-S/heme “central doublet” is shown in green. Green dashed lines are used 

to indicate positioning of that doublet in all traces. The red line over the black trace of the 

raw data is the best fit simulation of the spectrum. Strains were initially grown in M9 

glucose minimal media for 24 hours and then used to inoculate a 1 L M9 glucose minimal 

media culture with added 100 µM 57Fe(III)-citrate. The cells were harvested at mid-log 

phase.  
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Fe -(II) content. Results show that though the overall NHHS Fe-(II) content of the wild-

type strain and the sensitive ∆iscU-fdx∆bfr∆dps strain were similar at 70-75%, there were 

changes in the different Fe(II) pools (Table 2.2). While the parent ∆iscU-fdx strain and 

the sensitive ∆iscU-fdx∆bfr∆dps mutant strain had similar concentrations of Fe(II)B 

pools, they had different Fe(II)A pools. Results also showed that in the ∆iscU-

fdx∆bfr∆dps strain, the NHHS Fe(II)B pool was doubled and its Fe(II)A pool reduced by 

almost a third compared to the wild-type strain. 

It was observed that the ∆iscU-fdx∆bfr∆dps stain also showed a higher non-heme 

high spin (NHHS) Fe-(III) content: 20% compared to both the wild-type and parent 

∆iscU-fdx strains. This form of iron is the iron stored in ferritins such as Ferritin A. Total 

intracellular iron content of the strains showed that the sensitive ∆iscU-fdx∆bfr∆dps 

strain had almost double the wild-type iron content (Figure 2.11).  

To further prove that the sensitivity in the ∆iscU-fdx∆bfr∆dps strain is caused by 

impaired Fe-S cluster function, we tested the strains in another growth assay in M9 

minimal media using sodium acetate as the carbon source. Cells grown on acetate by-pass 

glycolysis to go through the glycoxylate shunt and tricarboxylic acid (TCA) cycle for 

metabolism. The TCA cycle has enzymes that contain Fe-S cluster, such as succinate 

dehydrogenase and aconitase.  Acetate growth requires respiration for all synthesis of 

molecules. The respiratory complexes I and II contain many Fe-S clusters.20, 21 Any strain 

that has difficulty assembling Fe-S clusters will therefore show a dramatic growth 

phenotype in this media. The ∆iscU-fdx strain did grow poorly in this media but the 

sensitive ∆iscU-fdx∆bfr∆dps strain had the biggest growth defect (Figure 2.12) 

suggesting that this strain had difficulty making Fe-S clusters. 
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Table 2.2 Mössbauer iron speciation and percentages 

 MG1655 ∆iscU-fdx ∆iscU-fdx∆bfr∆dps 

Non-heme High Spin Fe(II) A 50% 51% 35% 

Non-heme High Spin Fe(II) B 23% 39% 40% 

Central Doublet / Low Spin Heme 20% 3-5% - 

Non-Heme High Spin Fe(III) 10% 5% 20% 

Iron adsorption percent effect 4% 4% 14% 
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Figure 2.11. The ∆iscU-fdx ∆bfr ∆dps mutant strain accumulates more iron than the 

WT when pre-grown in 100 µM 57Fe (III)-citrate. Atomic absorption spectroscopy of 

exponential phase cells grown in 100 µM 57Fe (III)-citrate. 
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Figure 2.12. The ∆iscU-fdx∆bfr∆dps strain shows a defective growth phenotype in 

M9 acetate growth without stress. All strains were grown in M9 glucose minimal 

media for 24 hours for 18 hours and then washed and normalized to same starting OD600 

in fresh M9 sodium acetate minimal media for 24 hours. Cell density was measured after 

48 hours. All growths were repeated in triplicate (n=3) and error bars indicate one 

standard deviation from the mean value. 
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FtnA is inaccessible by the Suf Pathway 

The delayed lag phase in the sensitive ∆iscU-fdx∆bfr∆dps strain is abolished with 

the added ftnA deletion when pre-grown in both LB (Figure 2.13) and M9 minimal media 

(Figure 2.14). In the ∆iscU-fdx∆bfr∆dps double mutant strain, additional deletion of ftnA 

(∆iscU-fdx∆ftnA∆dps∆bfr ) rescued the sensitivity of the strain to both iron starvation 

(Figure 2.15) and oxidative stress (Figure 2.16). This seems to suggest that the iron stored 

in FtnA is not easily accessed by Suf and became more available to the suf pathway when 

FtnA was deleted. This suggests that Fe-S cluster formation had been restored in this 

∆iscU-fdx∆ftnA∆bfr∆dps mutant. When pre-grown in iron-limiting media and stressed 

with BIPY, the ∆iscU-fdx∆ftnA∆bfr∆dps grew similar to the wild-type strain (Figure 

2.17). 

FtnA is expressed during the log phase and functions as the main iron storage 

protein under Fe replete conditions. Its expression is upregulated when the Fur-Fe2+ 

derepresses its transcription by directly competing with the H-NS repressor binding at its 

promoter site. This suggests that when iron is abundant in the cell, its mainly stored in the 

protein. When iron in the form of ferric citrate was added to the sensitive ∆iscU-

fdx∆bfr∆dps mutant strain in a range of concentrations (1-10 µM), the strain pre-

incubated with 10 µM was the most sensitive to the BIPY stress (Figure 2.9). This result 

suggests that the addition of the iron resulted in an up-regulated FtnA expression. This 

means that in excess iron environments, more iron is sequestered in the FtnA ferritin and 

this iron is inaccessible to the Suf pathway. When ferric citrate was added to the wild-

type and ∆iscU-fdx∆ftnA∆bfr∆dps strains, both the strains grew more resistant to BIPY 

stress (Figure 2.18). This suggests that in the ∆iscU-fdx∆ftnA∆bfr∆dps strain, the absence 
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Figure 2.13. Additional deletion of ftnA rescues the mild increase in lag phase 

duration in LB media with no stress of the ∆iscU-fdx∆bfr∆dps strain (A) All strains 

were grown in LB media for 18 hours. After, they were washed and inoculated into fresh 

0.2% glucose minimal media and optical cell density was measured initially every 30 

mins until they exited lag phase, and then hourly. All cell growths were repeated in 

triplicate (n=3) and error bars indicate one standard deviation from the mean value. (B) 

Lag phase and doubling time were calculated from the timed growth curve obtained in 

(A). 

A 
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Figure 2.14. Additional deletion of ftnA rescues the mild increase in lag phase 

duration in minimal media with no stress of the ∆iscU-fdx∆bfr∆dps strain. (A) All 

strains were grown in M9 glucose minimal media for 24 hours. After this, they were 

washed and inoculated into fresh M9 gluconate minimal media and density was measured 

initially every 30 mins until they exited lag phase, and then hourly. All growths were 

repeated in triplicate (n=3) and error bars indicate one standard deviation from the mean 

value. (B) Lag phase and doubling time calculated from growth curve in (A). 
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Figure 2.15. Additional deletion of ftnA rescues the sensitivity of the ∆iscU-

fdx∆bfr∆dps strain to bipyridyl.  All strains were grown in LB for 18 hours. After this, 

they were washed and inoculated into fresh 0.2% gluconate minimal media with varying 

concentrations of BIPY. The final cell density was measured after 24 hours. All growths 

were repeated in triplicate (n=3) and error bars indicate one standard deviation from the 

mean value. 
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Figure 2.16 Additional deletion of ftnA rescues the sensitivity of the ∆iscU-

fdx∆bfr∆dps strain to oxidative stress.  All strains were grown in LB for 18 hours. After 

this, they were washed and inoculated into fresh 0.2% gluconate minimal media with 

varying concentrations of PMS. The final cell density was measured after 24 hours. All 

growths were repeated in triplicate (n=3) and error bars indicate one standard deviation 

from the mean value.  
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Figure 2.17. Additional deletion of ftnA increases the sensitivity of the ∆iscU-

fdx∆bfr∆dps strain to bipyridyl when pre-grown in M9 minimal media.  All strains 

were grown in M9 glucose minimal media for 24 hours. After this, they were washed and 

inoculated into fresh 0.2% gluconate minimal media with varying concentrations of 

BIPY. The final cell density was measured after 24 hours. All growths were repeated in 

triplicate (n=3) and error bars indicate one standard deviation from the mean value. 
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Figure 2.18. Addition of iron to the pre-stress growth media does not alter the 

sensitivity of the ∆iscU-fdx∆ftnA∆bfr∆dps to BIPY (A) and (B) were pre- grown in M9 

glucose minimal media with varying concentrations of ferric citrate added. Cells were 

grown for 24 hours, subsequently washed and inoculated into fresh M9 gluconate 

minimal media with BIPY. 

  

B 

A 
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of FtnA made the extra iron create or increase an iron that is available to Suf for its 

utilization. 

Mössbauer analysis also showed that the additional deletion of FtnA restored Fe-S 

cluster assembly compared to the sensitive ∆iscU-fdx∆bfr∆dps mutant strain (Figure 

2.19). The spectra also showed no iron in the baseline. This iron is in form of Non Heme 

High Spin Fe (III) and it is the iron stored in ferritins usually ferritin A. The ∆iscU-

fdx∆ftnA∆dps∆bfr strain two NHHS Fe (II) pols were also comparable to the wild-type 

strain although its NHHS Fe (II)B pool was slightly higher compared to it (Table 2.3). 

Total intracellular iron content of the strains showed that the ∆iscU-

fdx∆ftnA∆dps∆bfr strain with restored Fe-S cluster functions also had the least amount of 

total intracellular iron (Figure 2.20). To further confirm that Fe-S cluster function had 

been restored, we tested the strains in another growth assay in M9 sodium acetate 

minimal media. We observed that the cells grew to a level comparable to the wild-type 

(Figure 2.21) indicating that it had un-impaired Fe-S cluster function and ability to 

respire. 

The expression of the sufABCDSE operon is normally repressed by Fur under 

iron-replete conditions22 and this repression is lost, leading to suf expression, under iron 

starvation conditions. It is possible that the various iron storage mutations increase the 

level of Fe2+ -Fur leading to decreased Suf expression which would explain the observed 

deficiencies in Fe-S cluster biogenesis in a ∆iscU-fdx mutant. To test this we directly 

monitored SufD protein expression by Western blot (Figure 2.22).  SufD is translated 

from a polycistronic mRNA containing the sufABCDSE genes and is required for Suf 
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Figure 2.19. The ∆iscU-fdx∆ftnA∆dp∆bfr strain has restored Fe-S cluster assembly 

function.  Whole-cell Mössbauer spectroscopy of indicated strains of E. coli grown in 

M9 glucose media with 100 µM 57 Fe(III)-citrate.  Spectra were collected at 5 K, 0.05 T.  

The purple, black, and green lines above the spectrum are simulations of the various 

spectrum components assuming δ=1.28 mm/s, ∆EQ = 2.76 mm/s, 45% area (purple); 

δ=1.26 mm/s, 30% area (black); and δ=0.44 mm/s, ∆EQ = 1.05 mm/s, 25% area (green).  

The Fe-S/heme “central doublet” is shown in green. The red line over the black trace of 

the raw data is the best fit simulation of the spectrum. Strains were initially grown in M9 

glucose minimal media for 24 hours and then used to inoculate a 1L M9 glucose minimal 

media culture with added 100 µM 57Fe(III)-citrate. The cells were harvested at mid-log 

phase, washed and frozen in liquid Nitrogen for Mössbauer analysis. 
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Table 2.3 Mössbauer iron speciation and percentages 

 MG1655 ∆iscU-

fdx 

∆iscU-

fdx∆bfr∆dps 

∆iscU-

fdx∆ftnA∆dps∆bfr 

 

Non-heme High Spin 

Fe (II) A 

50% 51% 35% 50%  

Non-heme High Spin 

Fe (II) B 

23% 39% 40% 28%  

Central Doublet / 

Low Spin Heme 

20% 3-5% - 22%  

Non-Heme High 

Spin Fe (III) 

10% 5% 20% 3%  

Iron adsorption 

percent effect 

4% 4% 14% -  
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Figure 2.20. The ∆iscU-fdx∆ftnA∆dps∆bfr mutant strain accumulates less iron than 

the WT when pre-grown in 100 µM 57ferric citrate though it has restored Fe-S 

cluster function. Atomic Absorption Spectroscopy of exponential phase cells grown in 

100 µM 57ferric citrate. 
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Figure 2.21. The ∆iscU-fdx∆ftnA∆dps∆bfr strain shows no defective growth 

phenotype in M9 acetate growth without stress. All strains were grown in M9 glucose 

minimal media for 24 hours for 18 hours and then washed and normalized to same 

starting OD600 in fresh M9 sodium acetate minimal media for 24 hours. Cell density was 

measured after 48 hours. All growths were repeated in triplicate (n=3) and error bars 

indicate one standard deviation from the mean value. 
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Figure 2.22. Suf expression upregulated in the mutants with the ∆iscU-fdx 

background. Western blot analysis of equal amounts of total protein from E. coli strains 

grown in M9 glucose minimal media with or without 10 µM Fe (III)-citrate addition 

using α-SufD antibodies.  
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function. We found that SufD is weakly expressed in M9 glucose minimal media in the 

wild-type strain (which still contains a functional Isc pathway). This expression is 

lowered when ferric citrate is added, indicating iron-responsive repression by Fur. In 

contrast (in the ∆iscU-fdx parent strain), SufD expression is constitutively upregulated 

and in the iron storage mutant strains in the ∆iscU-fdx background. Surprisingly, when 10 

µM ferric citrate was added SufD expression is further increased in the ∆iscU-fdx strain 

as well as in all of the iron storage mutants constructed in that genetic background 

(Figure 2.22). 

To further assess the regulation in these mutants we decided to assess the 

transcript levels of another Fur-regulated target gene. FepA is an integral bacterial outer 

membrane porin protein, which is involved in the active transport of iron bound by the 

siderophore enterobactin from the extracellular space.24 To assess whether FepA is 

differentially regulated in different strains, we carried out primer extension assays to 

measure fepA transcript levels in cells exposed to high BIPY(250 µM). We measured 

these levels in both nutrient rich (LB) and M9 glucose minimal media. The transcript 

levels for all the strains were practically undetectable in LB media without BIPY added 

(Figure 2.23A). That result indicates the iron demand was negligible in LB as they had 

adequate iron in the cells. When stressed with 250 µM BIPY, the fepA transcript was 

upregulated as the cells needed to increase the iron supply to match the increased cellular 

demands. 

The observed phenotypes are not attributed to changes in total intercellular levels 

In order to assess impact of deleting the ferritins on the total cellular Fe levels, wild type 

and ferritin-deficient mutant strains were analyzed for total Fe content by inductively  
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Figure 2.23. Transcriptional activity of FepA. Cells were grown in (A) LB or (B) M9 

Glucose minimal media to mid-log phase (0.5), some harvested as the control probe and 

the remaining induced for 1 hour with 250 µm BIPY for 1 hour. 

A 
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FepA 
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coupled plasma atomic mass spectroscopy (ICP-MS). Total Fe content was lower in the 

∆iscU-fdx∆bfr∆dps strain compared to the WT and the parent ∆iscU-fdx strain when 

grown in LB media and up till mid-log in 0.2% glucose minimal media. Strains in 

stationary phase in the 0.2% glucose minimal media all showed the same approximate 

total cellular iron content (Figure 2.24). Deletion of the FtnA from the ∆iscU-

fdx∆bfr∆dps double mutant did not  increase the total cellular iron level of the strain 

indicating increased Fe uptake does not explain the growth rescue (Figure 2.24). 

Inactivation of bfr and dps raises the intracellular free Fe concentration 

` Chelatable cellular iron pools were measured in LB-cultured stationary phase 

cells by formation of a desferrioxamine-Fe by EPR spectroscopy. The intracellular labile 

Fe pools exist predominantly in the Fe2+ form, which exists as S = 0 or S = 2 and lacks an 

EPR signal. However, the cell-permeable Fe chelator desferrioxamine facilitates 

oxidation of the Fe2+, and the resulting Fe3+-desferrioxamine chelate exhibits a prominent 

EPR signal at g = 4.3. Moreover, protein-bound Fe does not resonate at this g-value and 

DFO does not appear to remove iron from metalloproteins. A ∆fur strain, which served as 

a positive control, showed free Fe levels more than twice as high as wild type (Figure 

2.25A). This increase in free Fe is presumably a consequence of constitutive Fe 

assimilation in this strain where iron uptake systems are constitutively expressed. The 

parent ∆iscU-fdx strain had the least amount of DFO-detectable of all the strains. Labile  

(DFO-chelatable) iron is highest in the ∆iscU-fdx∆bfr∆dps mutant strain. The additional 

deletion of ftnA decreases the DFO-detectable iron pool even though total cellular iron 

levels are comparable with the wild-type and parent ∆iscU-fdx strains. This deletion 
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Figure 2.24. The additional deletion of ftnA does not alter the low iron content of the 

∆iscU-fdx∆bfr∆dps strain (so doesn’t explain the rescue effect of deletion ftnA. (A) 

Cells analyzed after 18 hours (in LB) and 24 hours (in M9 glucose minimal media) 

respectively. (B) Cells analyzed at different growth phases in M9 glucose minimal media 

after initial 18 hours growth in LB media. All growths were repeated in triplicate (n=3) 

and error bars indicate one standard deviation from the mean value. 
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Figure 2.25. Labile iron pools are highest in the ∆iscU-fdx∆bfr∆dps strain. (A) 

Individual EPR spectra of the Fe(III)-DFO complex, showing an EPR signal with a 

calculated g-value of 4.3 from cells grown in LB. (B) Intracellular, DFO-labile iron 

concentrations quantified from (A) and normalized to cell volume and number. 
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releases iron  into a novel iron pool when FtnA is deleted. This new pool can be accessed 

by the Suf pathway but is not DFO-detectable.  

Mössbauer analysis on the different strains showed that the while the wild-type 

strain had 70% of its iron in Non Heme High Spin Fe (II) state, it had about 20% in Fe-S 

clusters and the remaining in ferritins (Table 2.2, 2.3). The parent ∆iscU-fdx in contrast 

had 90% of its iron in the NHHS Fe (II) state with 5% in Fe-S clusters with 5% in 

baseline as ferritins. The sensitive ∆iscU-fdx∆bfr∆dps mutant strain had no detectable 

iron in form of Fe-S clusters, 75% in NHHS Fe (II) and 20% in the baseline in form of 

iron stored in ferritin A. The rescued ∆iscU-fdx∆ftnA∆dps∆bfr mutant strain however has 

a similar iron profile to the wild-type except it had no Fe (III) baseline signal. 

2.4 Discussion 

We have deleted the Isc system in E. coli thereby creating a mutant parent strain 

(annotated as ∆iscU-fdx) that is entirely dependent on the Suf pathway for viability. This 

mutant still retains both the IscS cysteine desulfurase (it serves as substrate for other 

metabolism in cell) and the IscR metalloregulatory proteins (regulator to the suf 

pathway).   

Our results indicate that in the ∆iscU-fdx ∆bfr ∆dps iron storage mutant the Suf 

system cannot efficiently perform Fe-S cluster biogenesis under stress conditions even 

though the Suf system is highly expressed (Figure 2.22), indicating that the changes in 

intracellular iron pools may prevent Suf access to iron in those backgrounds (Figure 2.3). 

The ∆iscU-fdx ∆bfr ∆dps had a growth deficiency when 150µM or higher of 2,2-

bipyridyl was introduced into the media. This strain didn’t show this same growth 
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deficiency when it had functional isc pathway (Figure 2.7). This phenotype was also 

observed when the strain was exposed to by oxidative stress by PMS (Figure 2.6). This 

result indicates that the bfr and dps are both directly or indirectly influencing 

iron availability to the Suf pathway and have some redundancy between them since 

individual deletions didn’t give a growth phenotype in the ∆iscU-fdx background. 

Our results suggest that the FtnA iron storage protein, which plays a predominate 

role in iron storage under iron excess conditions, may inhibit the ability of the Suf system 

to construct Fe-S clusters under stress.  We observed that the growth phenotype occurred 

when the strains were initially pre-grown in an iron rich media and then stressed with 

either oxidative stress (PMS) or iron starvation conditions (2,2-bipyridyl). When initially 

pre-grown in minimal media (iron poor) and then stressed, the ∆iscU-fdx ∆bfr ∆dps and 

strain grew better than the MG1655 strain. FtnA has been experimentally proven to be 

the main iron storage protein in E.coli and it’s been shown to be up-regulated in iron rich 

environments. In the ∆iscU-fdx ∆bfr ∆dps mutant strain grown in the LB media, we 

postulate that the FtnA is upregulated and stores most of the available iron in a form that 

is not easily assessed by the Suf pathway. In the minimal media however, the FtnA 

expression will be repressed and there would be therefore be more available iron that can 

be accessed by the Suf pathway. This hypothesis is further supported by the fact that 

additional deletion of the ftnA gene actually rescues the BIPY and PMS sensitivity of the 

∆iscU-fdx ∆bfr ∆dps strain.  

Our results indicated that total cellular iron content did not necessarily correlate 

with sensitivity to stress.  While the total cellular iron in ∆iscU-fdx ∆bfr ∆dps strain is 

lower than the wild-type and parent ∆iscU-fdx strains, the ∆iscU-fdx∆ftnA∆bfr∆dps strain 
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had the lowest total cellular iron despite the fact it grew well under stress conditions. 

Further characterization of the iron pools in these mutants using the DFO chelator 

showed that the ∆iscU-fdx ∆bfr ∆dps had the highest free iron pool. However, the ∆iscU-

fdx ∆ftnA ∆bfr ∆dps strain (which shows no sensitivity to stress conditions) also had 

about a 4fold increase in labile iron pool compared to the wild-type or ∆iscU-fdx strains. 

This result indicates that the speciation of these labile iron pools is likely changing in the 

organism as opposed to total cellular or labile iron levels.  

We characterized the mutant strains using whole-cell Mössbauer spectroscopy to 

determine if deletion of the iron storage proteins affects specific iron pools (Figures 2.9, 

2.19). In the case of the stress-sensitive iron storage mutant strains ∆iscU-fdx ∆bfr ∆dps, 

we found that the signal from [4Fe-4S] 2+ clusters is nearly undetectable.  This result 

indicates that Suf is further impaired in these mutant backgrounds.  Surprisingly this 

BIPY and PMS sensitive strain showed increased total iron accumulation compared to 

wild-type and ∆iscU-fdx strains at high Fe levels (100µM). Cell-normalized total iron 

measurements using atomic absorption spectroscopy showed that total iron content in the 

∆iscU-fdx ∆bfr ∆dps increased by approximately 2-fold compared to the parent ∆iscU-fdx 

strain (under high Fe growth). Along with this increase in total iron, there also is an 

increase in the baseline absorption representing NHHS Fe (III) (to about 20% of the total 

Fe). This signal indicates a likely increase in the amount of Fe (III) in FtnA which is still 

present. Thus the mutant is sensitive to BIPY and PMS despite the fact it has elevated 

total iron, indicating that the redistribution of iron into different pools likely accounts for 

the sensitivity rather than a decrease in total iron.     
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Whole-cell Mössbauer spectroscopy analysis of the ∆iscU-fdx∆ftnA∆dps∆bfr a 

strain that was rescued for growth in BIPY and PMS showed a spectrum markedly 

similar to the WT strain (Fig. 2.19).  In fact the amount of the Fe-S cluster central 

doublet/ Low Spin heme was nearly to the levels observed in the WT strain and was 

actually greater than that of the ∆iscU-fdx parent strain. This result suggests that at least 

part of the reason that Suf cannot fully complement the loss of Isc in the ∆iscU-fdx parent 

strain is because of the presence of FtnA.  In addition to restoring Fe-S cluster biogenesis 

by Suf, the additional deletion of ftnA in the ∆iscU-fdx ∆bfr ∆dps strain reverses the iron 

over-accumulation phenotype and restored normal Fur regulation in M9 media under 

high iron conditions. The iscU-fdx∆ftnA∆dps∆bfr spectrum also showed a much reduced 

NHHS Fe (III) signal compared to that of the ∆iscU-fdx ∆bfr ∆dps strain, possibly due to 

lack of iron incorporation into FtnA.   

SufD levels were actually further increased by ferric citrate addition to the ∆iscU-

fdx∆bfr∆dps strain. These results were quite surprising given that the strain has elevated 

total intracellular iron levels compared to the WT and ∆iscU-fdx strains and one would 

expect that SufD expression would actually be strongly repressed by Fe2+-Fur under those 

conditions.23 Suf expression may also be altered due to elevated oxidative stress. The 

OxyR regulon is activated in oxidative stress and induces suf expression.25 This may have 

been potentiated by excess iron in the cell.   

Clearly the exact speciation of that additional iron is key to its interaction with Fur 

and effects on iron-dependent regulation. Together the gene expression studies 

monitoring Suf expression and the Mössbauer spectroscopy analysis support the 

hypothesis that the iron storage proteins themselves represent distinct iron “pools” within 
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the cell that may not interface similarly with the Suf Fe-S cluster biogenesis pathway or 

the Fur iron regulatory network. Suf expression may also be altered due to elevated 

oxidative stress. The OxyR regulon is activated in oxidative stress and induces suf 

expression. This may have been potentiated by excess iron in the cell.  
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CHAPTER THREE 

FtnB may pay a role in iron donation to the Suf pathway 

Abstract 

The Escherichia coli genome encodes at least four putative ferritins: Ferritin A (FtnA), 

Bacterioferritin (Bfr), DNA binding protein of starved cells (Dps) and a ferritin-like 

protein designated Ferritin B (FtnB). The coexistence of multiple ferritins within E. coli 

suggests that they may fulfill disparate physiological roles and/or are expressed under 

different conditions. FtnB, which lacks the conserved ferroxidase site conserved in other 

ferritins has not been characterized in E.coli.  In this study, we characterize the possible 

role of FtnB for Suf Fe-S cluster assembly in E. coli. We found that the deletion of the 

FtnB and Bacterioferritin proteins caused an inability for the strain to make Fe-S clusters. 

Our studies therefore indicate that the FtnB protein plays a role in iron donation to the suf 

pathway.  
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3.1 Introduction 

The Escherichia coli genome encodes at least four putative ferritins: Ferritin A 

(FtnA), Bacterioferritin (Bfr), DNA binding protein of starved cells (Dps) and a ferritin-

like protein designated Ferritin B (FtnB). The coexistence of multiple ferritins within E. 

coli suggests that they may fulfill disparate physiological roles and/or are expressed 

under different conditions.1 FtnB, sometimes annotated as YecI, has not been characterized 

in E.coli.  It’s been shown to lack several of the key amino acid residues comprising the 

ferroxidase centre of other ferritins (Figure 3.1). It shares the highest peptide percent 

identity with FtnA (32.335%) compared to Bfr (14%) and Dps (10.4%).2 Transcriptional 

expression of FtnB is upregulated by Fe2+-Fur binding at the Pribnow box upstream to 

prevent binding of other repressors3 (Figure 1.2). A recent study in Salmonella 

Typhimurium however suggests it plays an important role in Fe-S cluster repair and 

virulence. The protein characterized for the first time was shown to exacerbate oxidative 

stress in absence of other ferritins and be required for full Salmonella virulence and 

efficient repair of Fe-S cluster containing enzymes. However, in contrast to its regulation 

in E.coli, it was expressed during iron-restricted conditions and repressed by Fur.4 It has 

been proposed that FtnB might not function as a real ferritin but rather function as a store 

of Fe2+ that can be readily mobilized for the repair of damaged Fe-S clusters.5 

In this study, we characterize the possible role of FtnB for Suf Fe-S cluster 

assembly in E. coli. We examine its possible contribution on intracellular free iron, 

susceptibility to oxidative stress and possible iron donation to the Suf Fe-S cluster 

pathway. To test whether the Suf system directly or indirectly accesses iron from one or 

more iron storage proteins in vivo, we constructed a mutant strain with the Iron Sulfur  



www.manaraa.com

88 
 

 

 

 

 

 

 

 

 

 

Figure 3.1. Sequence comparisons of FtnA and FtnB. The areas shaded in green are 

the binding iron binding sites in FtnA Sequence generated using ClustalW 
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Cluster (Isc) housekeeping pathway inactivated in the background (∆iscU-fdx). 

This ensured that the strain was completely dependent on the Suf pathway for its Fe-S 

cluster biogenesis. Various mutants were then constructed by further deleting FtnB singly 

and in combination with other iron storage proteins in this Isc inactivated background 

3.2 Materials and Methods 

Recombineering.  E.coli wild-type strain mG1655 was the parent strain for all studies. 

The gene deletions were constructed as described previously. Briefly, a kanamycin 

resistance cassette was amplified from pKD4 primer pairs containing approximately 35bp 

of sequence homologous to regions upstream and downstream of the target genes. The 

PCR products were transformed into NM400 expressing the λ- Red recombinase system, 

resulting in placement of the target gene with the KanR cassette. Mutations were moved 

by P1 transduction into wild-type MG1655. In some cases, the Kan cassette was removed 

from a single mutant strain after transformation with the pCP20 plasmid so that the 

double mutant strains could be conducted by P1 transduction. Colonies will be selected 

and screened for positive recombinants by colony PCR using the primers designed to 

detect each point mutation. Mutations will be confirmed by sequencing. 

Growth medium and conditions. For bacterial growth, an individual colony was 

transferred from fresh Lennox Broth (LB) agar plates into either LB media or M9 glucose 

minimal media containing 1X M9 minimal salts (Sigma-Aldrich), 0.2% (w/v) glucose 

(Acros Organics), 0.2% (w/v) magnesium chloride (Sigma-Aldrich) and 0.1mM calcium 

chloride (Sigma-Aldrich). Cultures were grown in LB or M9 minimal media for 18hours 

and 24 hours respectively at 37°C and 200rpm. When necessary, kanamycin (30μg/mL) 
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or chloramphenicol (25μg/mL) was added to the media. For cells grown under various 

iron conditions, different concentrations of ferric citrate were added to the 0.2% glucose 

M9 minimal media. For cell growth curves, the cell growth was monitored by UV-Vis 

absorption at 600nm and plotted versus time in hours. For sensitivity assays, the cells 

were collected, washed in sterile 1 X M9 minimal salts and normalized to a final OD600 of 

0.04 in M9 minimal media with 0.2% (w/v) gluconate (Alfa Aesar) containing varying 

amounts of 2,2-bipyridyl (BIPY) or Phenazine Methosulfate (PMS). Cell density (final 

optical density at 600nm) was measured after 24-hr growth at 37°C and assays were 

performed in triplicate. 

Whole cell EPR spectroscopy: A protocol was adapted from the ImLay and Kiley Labs. 

Cells were grown overnight aerobically in 250 mL of LB before harvesting by 

centrifugation. Cells were collected by centrifugation at 8,000 x g for 20min at 4°C. The 

pellet was re-suspended using 10mL of pre-warmed M9 gluconate media supplemented 

with 10mM diethylenetriaminepentaacetic acid (DTPA) (Sigma-Aldrich), 20 mM 

desferrioxamine mesylate salt (DFO) (CalBiochem) and incubated for 10 min at 37°C at 

200rpm in a 250mL flask for proper oxygenation. The cells were then centrifuged, 

washed with cold 20 mM Tris-HCl, pH 7.4and re-suspended in a final volume of 0.5 

volumes (relative to the pellet volume)  of 20 mM Tris-HCl, pH 7.4, 30% glycerol to give 

a final glycerol concentration of approximately 10-15%. A 300µL volume of the re-

suspended cells was loaded into a 3-mm quartz EPR tube (Norell Incorporated, NC) and 

immediately frozen in liquid N2. A sample of each cell suspension was diluted 200x to 

obtain a final OD600. Samples were stored in liquid N2 until EPR measurements were 

performed. Ferric-DFO standards were prepared over a range from 0µm to 100µm FeCl3  
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Table 3.1 Bacterial Strains 

Strain Relevant Genotype Or Phenotype 
Reference or 

Source 

Primers Sequence 5’ to 3’  

FtnB_PS1 

ATCTTGCACCTCTCCACTTCTGGATATAAGG 

ATATTAGGTGTAGGCTGGAGCTGCTTC This Study 

FtnB_PS2 

CAAAACCTTCATCGGCGCAATGCATTAGCGC 

CGATGATGACATATGAATATCCTCCTTAG This Study 

FtnB_up ACATTTCGGACCGGCAGAAAGG This Study 

FtnB_down CCGCTGCTTCAAACAGATGAG This Study 

   

E.coli 

Strains   

MG1655 Wild Type. E. coli, K12 Laboratory Strain 

∆iscU-fdx ∆iscU-fdx Laboratory Strain 

BN001 ∆iscU-fdx_∆bfr::kanᴿ_∆dps::cmᴿ This Study 

BN006 ∆ftnB::cmᴿ This Study 

BN007 ∆iscU-fdx_∆ftnB::cmᴿ This Study 

BN008 ∆iscU-fdx_∆bfr::kanᴿ_∆ftnB::cmᴿ This Study 

BN009 ∆iscU-fdx_∆ftnA::kanᴿ_∆ftnB::cmᴿ This Study 

BN010 ∆iscU-fdx_∆dps::kanᴿ_∆ftnB::cm This Study 

∆fur::kanᴿ ∆fur::kanᴿ Laboratory Strain 
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in 20 mM Tris-HCl, 1mM DFO, 10% glycerol, pH 7.4. The EPR signals were measured 

with a Bruker EMX X-band spectrometer (Rheinstetten, Germany). EPR parameters used 

were as follows: centerfield: 1564 G; sweep width: 500 G; Temp: 110K, Modulation 

frequency: 100KHz, Modulation amplitude: 12.5 Gauss, Modulation phase: 0, Harmonic: 

1, Receiver gain: 60, Time constant: 20.4 ms, Field: 301.25-2801.25 Gauss, g factor: 4.3, 

Attenuation: 16, Power: 5mW, number of scans, 10. Fe levels were quantified by 

normalizing the amplitude of the Fe signal of the samples to the Fe-DFO standards, and 

internal concentrations were calculated using the cell density and intracellular volume. 

Western Blot Analysis:  Cells were prepared as described above and pelleted at 6,000 x 

g for 20 mins. The pellets were lysed by sonication or Bacterial Protein Extraction 

Reagent (B-PER) (ThermoScientific) and the protein concentration checked using the 

Bradford assay. Equal total protein amounts were electrophoresed on a 15% SDS PAGE 

gel. Proteins were transferred to nitrocellulose membrane and blocked overnight with 

80% Odyssey blocking buffer (Li-Cor) in 1 X TBS (50 mM Tris-HCl pH 8.0, 150 mM 

NaCl) at 4₂C. Primary antibody incubations with α-SufD (1:5000), α-Bfr (1:1000), or α-

FtnA (1:2000) were performed in 40% blocking buffer in 1 X TBST (TBS + 0.001% 

Tween-20).  After 2 hours incubation at room temperature with shaking, membranes were 

washed 5 times (10 min each) with copious amounts of 1 X TBST. Then they were 

incubated with goat α-rabbit secondary antibody (1:20,000) at room temperature with 

shaking for 45 min. Membranes were washed with 1 X TBS and scanned using an 

Odyssey Infrared Imager (Li-Cor). 

Primer extension assay: RNA was extracted from MG1655 and the mutant strains by 

using the acid phenol method. The fepA primer was labeled by [γ-32P] ATP using T4 
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polynucleotide kinase (NEB). Primer extension with Superscript II reverse transcriptase 

(Invitrogen) was carried out according to manufacturer instructions. 8µg of total RNA 

was used as a template for cDNA synthesis. The cDNA products were separated on an 

8% polyacrimide gel. The gel was dried and exposed to CL-XPosure film 

(ThermoScientific). 

Atomic Absorption Spectroscopy. Intracellular iron content was calculated using the 

atomic absorption spectroscopy (AAS). Cells were grown to desired growth phase in M9 

minimal media and harvested, centrifuged at 4000 x g  for 20 mins and then pelleted 

three times at 16,000 x g with  intermediate washing in ICP-MS wash solution consisting 

of 50 mM EDTA tetrasodium salt, 100 mM Sodium Oxalate, 300 mM NaCl and 10 mM 

KCl to remove any cell surface associated metal ions. Washed cell pellets were re-

suspended in 1 mL 3% NaCl. The OD600 and volume of the cell suspension after the last 

wash was recorded. Cells digested in 300 µL concentrated nitric acid for 10 hours at 70oC 

and diluted to get an avid matrix of 3.5% in MilliQ water. Iron standards were prepared 

in MilliQ water. Iron analysis of fractions was performed on a PerkinElmer PinAACle 

900T graphite furnace atomic absorption spectrometer using the manufacturer’s 

recommended conditions.  

Mössbauer Analysis: Cells were initially grown in 35mL M9 glucose minimal media for 

24 hours at 37₂C at 200rpm. The overnight culture was then used to inoculate a 1L M9 

glucose minimal media supplemented with 10 µM and 100 µM 57Fe(III) citrate. 10 mM 

57Fe(III) citrate stock solution was prepared by dissolving 100mg 57Fe metal powder 

(IsoFlex USA) in 2 mL minimal amount aqua regia which is a 3:1 mixture of trace metal 

grade nitric acid (TMG) to trace metal grade hydrochloric acid (Fischer Scientific) while 
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stirring. Once dissolved, the solution was further diluted to a final volume of 100 mL. 

This stock was then treated with a 3-fold molar excess of sodium citrate (Fisher 

Scientific) while stirring. The solution was adjusted to pH 5 with 1 M NaOH (EMD 

Chemicals) resulting in a final 57Fe concentration of 10 mM. Cells were grown to desired 

growth phase, harvested and centrifuged at 6,000 x g for 20min. The pellet was washed in 

40 mL wash solution comprising 50 mM EDTA tetrasodium salt, 100 mM Sodium 

Oxalate, 300 mM NaCl, 10 mM KCl and centrifuged for at 4,000 x g for 20min. The 

wash solution was fully removed from the pellet and it was packed into Mössbauer cups 

and immediately frozen in liquid nitrogen prior to analysis.  

Mössbauer spectra were collected at the Texas A&M and analyzed in the Dr. Paul 

Lindahl lab by Joshua Wofford. Mössbauer spectra were recorded on MS4 WRC  4.5 to 

300 K closed-cycle Helium-refrigerated system and a W106 temperature controller) and 

LHe6T spectrometers (SEE Co., Edina, MN), the latter of which is capable of generating 

0–6 T fields. Both were calibrated using α-Fe foil. Spectra was analyzed at 5K and 0.05T 

and the resulting spectra were fitted over different iron species including Non-Heme Fe 

(II), Non Heme Fe (III) and Low Heme Fe fits.  

3.3 Results 

FtnB and Bfr may act as Iron sources to the Suf Pathway during stress conditions. 

To test if FtnB could donate iron to the Suf pathway we constructed a strain that 

was wholly dependent on the Suf pathway both during normal housekeeping and stress 

conditions. To do this, we selectively deleted part of the Isc pathway to create the ∆iscU-

fdx strain retaining iscR, a global regulator of Fe-S cluster assembly and iscS that donates 
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sulfur to other metabolic pathways. In this parent strain Isc is disrupted.  We then deleted 

FtnB alone or in combination with other iron storage proteins in this background (Table 

3.1) 

We first checked the growths of the mutants in the absence of stress in two types 

of media broth, the complex media Lennox Broth (LB) and the chemically defined M9 

glucose minimal media.  LB is a rich, iron replete complex media containing several 

carbon sources and optimal levels of small molecule metabolites (i.e. amino acids) 

required for growth.6 In contrast, M9 minimal media is limited for most nutrients and 

metals as compared to LB and only provides a single, controlled carbon source to support 

growth. Minimal media therefore allows a greater control over which nutrients and 

metals the cells are exposed to. 

  To test whether disruption of iron storage proteins affects sensitivity to iron 

deprivation, varying concentrations of the cell permeable iron chelator 2,2-bipyridyl 

(BIPY)  were added to the growth media and the final optical density measured after 24 

hours of growth in M9 gluconate minimal media. Growth on M9 gluconate minimal 

media occurs via the Entner-Duodoroff pathway that requires Phosphogluconate 

dehydratase (Edd) which  contains a [4Fe-4S] cluster.7 Disruption of Suf Fe-S cluster 

biogenesis in the ∆iscU-fdx strains will therefore result in that mutant being sensitive to 

environmental stress in M9 gluconate media. None of the mutations were lethal. 

A timed growth assay with no stress showed that the ∆iscU-fdx∆ftnB∆bfr mutant 

strain had an extended lag phase compared to both the parent ∆iscU-fdx strain and WT 

strain in M9 minimal media. This lag phase was exacerbated when 10µM iron was added 

to the minimal media (Figure 3.2). 
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Figure 3.2. The ∆iscU-fdx∆ftnB∆bfr strain shows an extended lag phase duration 

when pre-grown in minimal media with no stress which becomes more severe with 

addition of iron. All strains were grown in M9 glucose minimal media for 24 hours and 

then washed and normalized to same starting OD600 in fresh M9 glucose minimal media 

for 24 hours. Cell density was measured initially every 30 mins until they exited lag 

phase, and then hourly. All growths were repeated in triplicate (n=3) and error bars 

indicate one standard deviation from the mean value.  
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We observed that while individual deletion of FtnB didn’t make the parent ∆iscU-

fdx sensitive to oxidative and iron starvation stress, the double mutant ∆iscU-

fdx∆ftnB∆bfr strain showed a marked sensitivity to the stress conditions when pre-grown 

in the nutrient and iron rich media LB media before being transferred to an iron limiting 

stress media (gluconate media with dipyridyl) (Figure 3.3). The sensitive growth 

phenotype was also observed when strains were stressed with phenazine methosulfate to 

induce oxidative stress.  

When the strains were initially grown in a somewhat iron limited media (M9 

glucose minimal media) before being shifted to M9 gluconate minimal media with 

varying concentrations of 2,2-bipyridyl, the ∆iscU-fdx∆ftnB∆bfr strain showed no 

sensitivity and grew to a final cell density slightly higher than the wild-type control strain 

(Figure 3.5). This phenotype is similar to the ∆iscU-fdx∆bfr∆dps mutant strain.   This 

shows that when the strain is a pre-adapted to low iron conditions, they are able to 

withstand the stress effects caused by the presence of the iron-chelator, BIPY. These 

results together indicate that in the ∆iscU-fdx∆ftnB∆bfr strain, the Suf system cannot 

efficiently perform Fe-S cluster biogenesis under stress conditions.  

The ∆iscU-fdx∆ftnB∆bfr strain has impaired Fe-S cluster function 

Since growth of the ∆iscU-fdx ∆ftnB ∆bfr strain is sensitive to 2,2 bipyridyl, we 

tested if this was indeed due to an inability to form iron sulfur clusters. Therefore, 

cellular iron speciation in the mutant and parent strains was analyzed by Mossbauer 

Spectroscopy. The cells of interest were initially pre-grown in M9 glucose minimal 

media to stationary phase.  These were then used to inoculate fresh media at a cell optical 

density of 0.04 and grown to mid-log phase (OD600 0.5) in glucose (0.2%) M9- salts 
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Figure 3.3. The deletion of both ftnB and bfr sensitizes the ∆iscU-fdx strain to 

bipyridyl stress. All strains were grown in LB for 18 hours. After this, they were washed 

and inoculated into fresh 0.2% gluconate minimal media with varying concentrations of 

BIPY. The final cell density was measured after 24 hours. All growths were repeated in 

triplicate (n=3) and error bars indicate one standard deviation from the mean value. 
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 medium containing 100 µM 57Fe citrate. The cells were washed, cooled in liquid 

nitrogen and then analyzed by Mossbauer spectroscopy at 60K. In the spectrum of the 

∆iscU-fdx∆ftnB∆bfr, the central doublet mostly representing [4Fe-4S]2+ / Low Spin 

Heme (LSH) is nearly undetectable indicating that those strains have increased difficulty 

with making iron sulfur clusters (Figure 3.6). This spectra was similar to the parent 

∆iscU-fdx strain in lack of detectable Fe-S clusters, but it also had a much less Non High 

Heme Spin Fe (III) content compared to it. This is the iron in baseline which is stored in 

ferritins especially ferritin A.  

In the stains, it was observed that there existed 2 NHHS Fe (II) pools. One 

coordinated to oxygen/nitrogen ligands and denoted Fe (II)A and the other coordinated to 

sulfur ligands and denoted Fe (II)B. Both pools together make the combined NHHS Fe 

(II) content. Results show that the sensitive ∆iscU-fdx∆ftnB∆bfr mutant strain had similar 

NHHS Fe (II)B iron content to the parent ∆iscU-fdx but different NHHS Fe (II)A pools. 

The ∆iscU-fdx∆ftnB∆bfr  mutant strain had 2 completely different NHHS Fe (II) A and 

NHHS Fe(II)B concentrations compared to the wild-type. 

To further prove that the sensitivity in the ∆iscU-fdx∆bfr∆dps strain is caused by 

impaired Fe-S cluster function, we tested the strains in another growth assay in M9 

minimal media using Sodium acetate as the carbon source. Cells grown on acetate by-

pass glycolysis to go through the glycoxylate shunt and Tri-Carboxylic Acid (TCA) cycle 

for all cellular metabolism. The TCA cycle has enzymes that contain Fe-S cluster e.g. 

aconitase. Acetate growth requires respiration for all cellular synthesis. The respiratory 

complexes I and II contain many Fe-S clusters.8 Any mutant strain that has difficulty 

assembling Fe-S clusters will therefore show a dramatic growth phenotype in this media. 
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Figure 3.4. The deletion of both ftnB and bfr sensitizes the ∆iscU-fdx strain to 

Oxidative  stress. All strains were grown in LB for 18 hours. After this, they were 

washed and inoculated into fresh 0.2% gluconate minimal media with varying 

concentrations of BIPY. The final cell density was measured after 24 hours. All growths 

were repeated in triplicate (n=3) and error bars indicate one standard deviation from the 

mean value. 
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Figure 3.5. Pre-adaptation to low iron media rescues the sensitivity of the ∆iscU-fdx 

∆ftnB∆bfr strain to dipyridyl.  All strains were grown in 0.2% glucose minimal media 

for 24 hours. After this, they were washed and inoculated into fresh 0.2% gluconate 

minimal media with varying concentrations of BIPY. The final cell density was measured 

after 24 hours. All growths were repeated in triplicate (n=3) and error bars indicate one 

standard deviation from the mean value. 
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Figure 3.6. The ∆iscU-fdx∆ftnB∆bfr strain has virtually no Fe-S cluster assembly 

function.  Whole-cell Mössbauer spectroscopy of indicated strains of E. coli grown in 

M9 glucose media with 100 µM 57Fe(III)-citrate.  Spectra were collected at 5 K, 0.05 T.  

The purple, black, and green lines above the spectrum are simulations of the various 

spectrum components assuming δ=1.28 mm/s, ∆EQ = 2.76 mm/s, 45% area (purple); 

δ=1.26 mm/s, ∆EQ = 3.3 mm/s, 30% area (black); and δ=0.44 mm/s, ∆EQ = 1.05 mm/s, 

25% area (green).  The Fe-S/heme “central doublet” is shown in green.  Green dashed 

lines are used to indicate positioning of that doublet in all traces.  The red line over the 

black trace of the raw data is the best fit simulation of the spectrum. strains were initially 

grown in 0.2% glucose minimal media for 24 hours and then used to inoculate a 1L 0.2% 

glucose minimal media culture with added 100 um 57Fe(III)-citrate. The cells were 

harvested at mid-log phase, washed and frozen in liquid Nitrogen for Mossbauer analysis. 
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Table 3.2 Mössbauer iron speciation and percentages 

 MG1655 ∆iscU-fdx ∆iscU-fdx∆ftnB∆bfr 

Non-heme High Spin Fe (II)A 50% 51% 35% 

Non-heme High Spin Fe (II)B 23% 39% 40% 

Central Doublet / Low Spin Heme 20% 3-5% - 

Non-Heme High Spin Fe(II)I 10% 5% 25% 

Iron adsorption percent effect 4% 4% 11% 
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The ∆iscU-fdx had a slight growth phenotype in this media but the sensitive ∆iscU-

fdx∆ftnB∆bfr strain was even more sensitive in this media (Figure 3.7) indicating that this 

strain had more difficulty than the parent ∆iscU-fdx in Fe-S cluster assembly. 

Since we tested that the ∆iscU-fdx∆ftnB∆bfr strain had impaired Fe-S cluster 

assembly functions, we wanted to check if it was due to the Suf system not being 

properly expressed, or if iron importers in the strain had been affected.  The α-SufD 

(Figure 3.8) showed that the ∆iscU-fdx∆ftnB∆bfr strain expressed the Suf pathway 

adequately in minimal media and also that which was supplemented with 10 µM ferric 

citrate. This indicates that the impairment is not due to an abnormal function of the Suf 

pathway. It had elevated SufD expression compared to the ∆iscU-fdx parent strain. We 

checked the transcription levels of FepA, an iron importer9 both with and without iron 

starvation in form of 250 µM BIPY.  Transcript levels for all the strains were practically 

undetectable in LB media without BIPY added. That indicates the iron demand was 

negligible as they had adequate iron in the cells.  

When stressed with 250 µM BIPY, the fepA transcript was upregulated in all the 

strains as the cells needed to increase the iron supply to match the increased cellular 

demands. However, in the ∆iscU-fdx∆ftnB∆bfr mutant it wasn’t as expressed as in the 

wild-type or parent ∆iscU-fdx strain (Figure 3.9A). In the cells initially grown on 0.2% 

glucose minimal media (iron-limited), the transcript level was repressed in the wild-type 

when it was stressed in the 250 µM BIPY.  

In both the ∆iscU-fdx∆ftnB∆bfr and the ∆iscU-fdx parent strains, the expression 

levels remained fairly equal in both control and stressed conditions although the ∆iscU-

fdx∆ftnB∆bfr had the lowest expression (Figure 3.9B). 
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Figure 3.7. The ∆iscU-fdx∆ftnB∆bfr strain shows a growth phenotype in M9 acetate 

growth.. All strains were grown in M9 glucose minimal media for 24 hours for 18 hours 

and then washed and normalized to same starting OD600 in fresh M9 sodium acetate 

minimal media for 24 hours. Cell density was measured after 48 hours. All growths were 

repeated in triplicate (n=3) and error bars indicate one standard deviation from the mean 

value.  
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Figure 3.8.  Suf expression upregulated in the ∆iscU-fdx∆ftnB∆bfr mutant strain. 

Western blot analysis of equal amounts of total protein from E. coli strains grown in M9 

glucose minimal media with or without 10 µM Fe(III)-citrate using α-SufD antibodies.   

 

 

  



www.manaraa.com

107 
 

 

 

Figure 3.9. Transcriptional activity of FepA. Cells were grown in (A) LB and (B) M9 

Glucose minimal media to mid-log phase (0.5), some harvested as the control probe and 

the remaining induced for 1 hour with 250µm BIPY for 1 

  

A 
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Inactivation of bfr and ftnB raises the intracellular free Fe concentration 

Free Fe concentrations in LB-cultured stationary phase cells were measured as 

desferrioxamine-chelatable Fe by EPR spectroscopy. The intracellular free Fe pool exists 

predominantly in the Fe2+ form, the EPR signal of which is non-existent. However, the 

cell-permeable Fe chelator desferrioxamine facilitates oxidation of the Fe2+, and the 

resulting Fe3+-desferrioxamine chelate exhibits a sharp EPR signal at g = 4.3. Moreover, 

protein-bound Fe does not resonate at this g-value. A ∆fur strain, which served as a 

positive control, showed free Fe levels more than twice as high as wild type (Figure 

3.10). This increase in free Fe is presumably a consequence of constitutive Fe 

assimilation in this strain. Labile (DFO-chelatable) iron is higher in the ∆iscU-

fdx∆ftnB∆bfr mutant strain compared to the wild-type and the parent iscU-fdx parent 

strain. It was also higher than the un-sensitive ∆iscU-fdx∆ftnB∆ftnA strain (Figure 3.9). 

3.4 Discussion 

We have deleted the Isc system in E. coli thereby creating a mutant parent strain 

(annotated as ∆iscU-fdx) that is entirely dependent on the Suf pathway for viability. This 

mutant still retains both the IscS cysteine desulfurase (it serves as substrate for other 

metabolism in cell) and the IscR metalloregulatory proteins (regulator to the suf 

pathway). 

Surprisingly, our results indicate that the FtnB protein may play a role in possible 

iron donation to the Suf pathway. The FtnB protein has been thought to be redundant or 

lack true ferritin activities since it lacks all the conserved residues for ferroxidase activity. 

Our results however indicate that it may serve a functional redundancy with the Bfr  
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Figure 3.10. Labile iron pools are higher in the ∆iscU∆ftnB∆bfr strain. Intracellular, 

DFO-labile iron concentrations normalized to cell volume and number. 
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protein in possible iron donation to the Suf pathway. We showed that in the ∆iscU-

fdx∆ftnB∆bfr iron storage mutant the Suf system cannot efficiently perform Fe-S cluster 

biogenesis under iron starvation (Figure 3.3) conditions even though the Suf system is 

highly expressed (Figure 3.8) and iron import systems are fully expressed (Figure 3.9) 

indicating that the changes in intracellular iron pools may prevent Suf access to iron in 

those backgrounds. The ∆iscU-fdx∆ftnB∆bfr had a growth deficiency when 150µM or 

higher of 2,2-bipyridyl was introduced into the media. This strain didn’t show this same 

growth deficiency when it was just the individual ftnB deleted, or when it was deleted in 

combination with either ftnA or dps in the ∆iscU-fdx background (Figure 3.3). This 

phenotype was also observed when the strain was induced by oxidative stress by PMS 

(Figure 3.4). This indicates that the bfr and ftnB are both directly or indirectly influencing 

iron availability to the Suf pathway.  

Our results indicated that characterization of the iron pools in these mutants using 

the DFO chelator showed that the ∆iscU-fdx∆ftnB∆bfr mutant had a higher labile iron 

pool compared to the wild type and the parent ∆iscU-fdx strain. This might contribute to 

the increase sensitivity of the strain.   

We characterized the mutant strains using whole-cell Mössbauer spectroscopy to 

determine if deletion of the iron storage proteins affects specific iron pools. The reasons 

for the lack of full complementation partially stem from the transcriptional repression of 

the suf operon by the Fur metalloregulatory protein. There is evidence Suf does not fully 

mature all Fe-S proteins as well as Isc and this accounts for the lower Fe-S cluster content 

as shown by Mossbauer analysis.  

In the case of the stress-sensitive iron storage mutant strains ∆iscU-fdx∆ftnB∆bfr, 
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we found that the signal from [4Fe-4S] 2+clusters is nearly undetectable.  This result 

indicates that Suf is further impaired in these mutant backgrounds. Surprisingly ∆iscU-

fdx∆ftnB∆bfr mutant strain accumulated about 2-fold more iron than the wild-type strain 

when grown under high iron conditions.  The strain had less baseline absorption 

representing NHHS Fe (III) compared to them also. It also had more NHHS Fe (II)B 

compared to the wild-type strain. Our results suggest that one of these pools may not be 

DFO-chelatable.  

 We characterized the possible function and regulation of FtnB in the E.  coli Suf 

pathway. Our results revealed surprisingly that although the FtnB protein lacks a true 

ferroxidase centre, it plays a part in the iron donation to the Suf pathway like the other 

ferritins: Bacterioferritin and DNA binding protein of starved cells. This results suggests 

that the FtnB might not function as a real ferritin but rather function as a store of Fe2+ that 

can be readily mobilized for Fe-S clusters in E. coli. 
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CHAPTER FOUR 

Wild-type Escherichia coli has multiple Non-Heme High Spin iron 

species 

Abstract 

Iron is an essential transition metal for most organisms due to its use in cofactors such 

as heme and iron-sulfur (Fe-S) clusters.  Much is known about iron acquisition from the 

environment and iron transport into the cell. However, not much is known about its 

cytoplasmic iron pools. Release of iron from damaged cofactors or accumulation of iron 

due to misregulation of iron homeostasis can lead to elevated Fenton chemistry, 

production of OH• radicals, and cell death.  We have decided to use Mössbauer 

spectroscopy to characterize the iron pools in Escherichia coli. Whole-cell Mössbauer 

spectroscopy provides a comprehensive overview of all iron in cells labeled during 

growth with the nuclear isotope 57Fe, to include iron oxidation state and some 

information as to likely atomic ligands (S, N, O).  Our results indicate that majority of the 

Fe species in the bacterial cell is non-heme high-spin (NHHS) Fe (II). Our results also 

show that the NHHS Fe (II) pool has differentially coordinated and Fur regulated species. 
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4.1 Introduction 

Iron an essential transition element, plays vital roles in many important biological 

processes including gene regulation, protein synthesis, oxygen transport and the TCA 

cycle.1 However, despite the indispensability of iron, it is also potentially toxic due to its 

tendency to catalyze the formation of toxic reactive oxygen species (ROS) which destroy 

DNA, RNA, cellular membranes, lipids and proteins. To avoid ROS-mediated damage, 

cells have evolved a complex system to maintain iron homeostasis and tightly regulate 

the concentration of Fe. Iron acquisition and storage systems therefore have to be strictly 

regulated in response to iron availability.2,3 This regulation is mediated by the 

homodimeric repressor protein, Fur, which employs ferrous iron as co-repressor.4 After 

adequate Fe2+ levels are reached in cell, it binds to Fur protein and the ensuring Fe-Fur 

complex activates its repression activity. This activation allows the Fe-Fur complex bind 

to a 19-bp sequence, designated the “iron box,” normally located near the Pribnow box of 

cognate promoters of iron-uptake genes to repress their transcription (Figure 1.2). 100 

Fe2+-Fur-regulated genes have been detected, most of which have not been previously 

reported. These include unknown genes potentially involved in iron acquisition. A large 

number of energy metabolism genes, mainly encoding Fe-containing respiratory 

complexes, were found to be Fe2+-Fur induced.5  

Fur is thought to directly sense on or more pools of kinetically exchangeable 

(labile) iron. Due to the reduction potential of the cytoplasm, these irons are likely 

Ferrous iron (Fe2+). 

E. coli had been  proposed to have multiple candidate ligands which coordinate 
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intracellular Fe (II) pools. However, it is difficult to study intracellular iron pools using 

only in vitro biochemical techniques since loss of cell integrity will dilute and mix cell 

components and potentially expose iron to oxygen or other reactive species.  While in 

vivo chemical probes that directly bind iron offer useful information on the concentration 

of the intracellular iron pools and can be used on intact cells, they may directly perturb 

iron or may sense only a fraction of the total labile iron pool.6-9 Whole-cell Mossbauer 

spectroscopy provides detailed overview of all iron in cells labeled during growth with 

the nuclear isotope 57Fe, to include iron oxidation state and some information as to likely 

atomic ligands (S, N, O). It therefore gives an initial picture without cellular fractionation 

that may disrupt cellular iron pools, thereby preserving the integrity of the pools. 

In all previously examined eukaryotic cells grown under Fe-sufficient conditions, the 

Fe content is dominated by Fe (III) bound to storage proteins (e.g. ferritin) or small 

molecules (polyphosphate) used for storage (e.g. yeast  vacuoles). In yeast, majority of 

iron in Fe-replete yeast cells is located in its vacuoles. These acidic organelles store Fe 

for use under Fe-deficient conditions and they sequester it from other parts of the cell to 

avoid Fe-associated toxicity. This iron has been shown to in the form of Non-Heme High 

Spin (NHHS) Fe(III) complexes coordinated to polyphosphate-related ligands. In 

respiring isolated yeast mitochondria, Mössbauer spectra show that the majority of the 

iron is present in the form of  [Fe4S4]
2+ clusters and heme centers - the prosthetic groups 

of the respiratory complexes with just about  ~ 2–3% is present as NHHS Fe (II) iron. 

The iron speciation of the eukaryotic cells depends on a multitude of factors including 

cell type, iron content of the media and if the cell is respiring or undergoing 

fermentation.10-16 
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We have decided to test if intracellular iron speciation is distinct between the 

Archaea, Bacteria, and Eukaryotes.  To test this, we will first characterize cellular iron 

pools in E. coli. We will analyze cells grown in a range of low to excess iron (in form of 

ferric citrate) concentrations. 

4.2 Materials and Methods 

Growth medium and conditions. For bacterial growths, an individual colony was 

transferred from Fresh Lennox Broth (LB) agar plates into M9 glucose minimal media 

containing 1X M9 minimal salts (Sigma-Aldrich), 0.2%  (w/v) glucose (Acros Organics), 

0.2% (w/v) magnesium chloride (Sigma-Aldrich), 0.1mM calcium chloride (Sigma-

Aldrich) for 24 hours at 37°C and 200rpm. When necessary, kanamycin (30μg/mL) was 

added to the media. For cell growth curves, the cell growth was monitored by UV-Vis 

absorption at 600 nm and plotted versus time in hours. For sodium acetate growth assay, 

the cells were initially pre-grown in M9 glucose minimal media for 24 hours. They were 

then washed and normalized into fresh M9 sodium acetate minimal media containing 1X 

M9 minimal salts (Sigma-Aldrich), 0.4%  (w/v) glucose (Acros Organics), 0.2% (w/v) 

magnesium chloride (Sigma-Aldrich), 0.1mM calcium chloride and monitored over 48 

hours.  

Mössbauer Analysis: Cells were initially grown in 35mL M9 glucose minimal media for 

24 hours at 37₂C at 200rpm. The overnight culture was then used to inoculate a 1L M9 

glucose minimal media supplemented with 10µM and 100µM 57Fe(III) citrate. 10mM 

57Fe(III) citrate stock solution was prepared by dissolving 100 mg 57Fe metal powder 

(IsoFlex USA) in 2 mL minimal amount aqua regia which is a 3:1 mixture of trace metal 
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grade nitric acid (TMG) to trace metal grade hydrochloric acid (Fischer Scientific) while 

stirring. Once dissolved, the solution was further diluted to a final volume of 100 mL. 

This stock was then treated with a 3-fold molar excess of sodium citrate (Fisher 

Scientific) while stirring. The solution was adjusted to pH 5 with 1 M NaOH (EMD 

Chemicals) resulting in a final 57Fe concentration of 10 mM. Cells were grown to desired 

growth phase, harvested and centrifuged at 6,000 x g for 20min. The pellet was washed in 

40mL wash solution comprising 50mM EDTA tetrasodium salt, 100 mM Sodium 

Oxalate, 300 mM NaCl, 10 mM KCl and centrifuged for at 4,000 x g for 20min. The 

wash solution was fully removed from the pellet by an additional wash in MilliQ water 

and it was packed into Mössbauer cups and immediately frozen in liquid nitrogen prior to 

analysis.  

Mössbauer spectra were collected at the Texas A&M and analyzed in the Dr. Paul 

Lindahl lab by Joshua Wofford. Mössbauer spectra were recorded on MS4 WRC  4.5 to 

300 K closed-cycle Helium-refrigerated system and a W106 temperature controller) and 

LHe6T spectrometers (SEE Co., Edina, MN), the latter of which is capable of generating 

0–6 T fields. Both were calibrated using α-Fe foil. Spectra was analyzed at 5K and 0.05T 

and the resulting spectra were fitted over different iron species including Non-Heme Fe 

(II), Non Heme Fe (III) and Low Heme Fe fits.  

Western Blot Analysis.  Cells were prepared as described above and pelleted at 6,000 x 

g for 20 mins. The pellets were lysed by sonicator or Bacterial Protein Extraction 

Reagent (B-PER) (ThermoScientific) and the protein concentration checked using the 

Bradford assay. Equal total protein amounts were electrophoresed on a 15% SDS PAGE 

gel. Proteins were transferred to nitrocellulose membrane and blocked overnight with 
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80% Odyssey blocking buffer (Li-Cor) in 1 X TBS (50mM Tris-HCl pH 8.0, 150mM 

NaCl) at 4₂C. Primary antibody incubations with α-FtnA (1:2000) incubations were 

performed in 40% blocking buffer in 1 X TBST (TBS + 0.001% Tween-20).  After 2 

hours incubation at room temperature with shaking, membranes were washed 5 times (10 

min each) with copious amounts of 1 X TBST. Then they were incubated with goat α-

rabbit secondary antibody (1:20,000) at room temperature with shaking for 45 min. 

Membranes were thrice washed with 1 X TBS ( 10 mins each) and then 1 X TBST twice 

(10 mins each) and scanned using an Odyssey Infrared Imager (Li-Cor). 

4.3 Results 

The Wild-type E. coli has two differentially Fur regulated Non High Spin Fe(II) 

(NHHS) species that are primarily ligated by oxygen donor ligands.   

We prepared 3 wild-type samples, grown to exponential phase aerobically (OD600 

approximately 0.5-0.6) with 1µM, 10 µM and 100 µM 57ferric citrate. These are 

designated WT1, WT10 and WT100 respectively. Mössbauer analysis of the wild-type 

exponential cells in different iron concentrations showed it contains Non-Heme High 

Spin (NHHS) Fe (II), Non-Heme High Spin Fe (III) and Low Spin Heme (LSH) Fe (II) / 

[4Fe-4S]2+ iron species. It also contains iron in the baseline and this is iron in forms 

stored in iron storage proteins.   

Preliminary data from whole-cell Mössbauer spectroscopy of E. coli wild-type 

cells showed that the majority of the Fe species in the bacterial cell is Non-Heme High-

spin (NHHS) Fe (II) (black and purple simulations in Figure 4. 1).  These isolated E. coli  

cells were grown to early  exponential phase in M9 glucose minimal media supplemented  
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Figure 4.1.   Whole-cell Mössbauer spectroscopy of wild-type E. coli grown in M9 

glucose media with 100 µM 57Fe(III)-citrate.  Spectra were collected at 5 K, 0.05 T.  The 

purple, black, and green lines above the spectrum are simulations of the various spectrum 

components assuming δ=1.28 mm/s, ∆EQ = 2.76 mm/s, 45% area (purple); δ=1.26 mm/s, 

∆EQ = 3.3 mm/s, 30% area (black); and δ=0.44 mm/s, ∆EQ = 1.05 mm/s, 25% area 

(green).  The red line is the best fit traced over the raw data (black) 
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with 100 µM 57Fe (III)-citrate. The concentration of NHHS Fe (II) we observed in E. coli 

is dramatically greater than that present in eukaryotic cells, including yeast and jurkat 

cells.  Mössbauer analysis also showed that the NHHS Fe (II) was in 2 forms based on 

the ligands the Fe (II) is coordinated to. The NHHS Fe (II) A pool is coordinated to 

oxygen/nitrogen ligands while the NHS (II)B pool is coordinated to sulfur ligands. 

In the E. coli wild-type strain, these NHHS Fe (II) species are primarily NHHS  

Fe (II)A form i.e. ligated by oxygen donor ligands (Figure 4.2). In this species, the NHHS 

Fe (II) exists in 2 forms. One of these species is Fur-dependent; the other is Fur-

independent. The Fur-dependent Fe (II)A changes strongly as the concentration of Fe in 

the medium changes. It does not seem as well regulated as the other Fe (II)A species. It 

was observed that the central doublet which accounts for Fe-S clusters and low spin heme 

varied with the iron concentrations in the media.   

In WT1, the NHHS Fe (II) concentration was the lowest but it had the highest, 

about 70% concentration of central doublets out of the three samples. WT10 had about 

10-20% of central doublet, while WT100 had the largest NHHS Fe (II) feature but the 

smallest Fe-S cluster activity (Figure 4.2).  We therefore hypothesize that the non -

regulated Fur-dependent Fe (II)A may primarily serve as feedstock for building Fe-S 

clusters and or heme.  The fur-independent Fe (II)A species may be better regulated 

compared to the fur-dependent  Fe (II)A species. 

The other main NHHS Fe (II) species is the NHHS Fe (II)B species i.e. 

coordinated with sulfur donors. This exists as a minority species in the wild-type strain 

compared to the NHHS Fe (II)A species. This also seems Fur-independent and pretty 

well regulated (Table 4.1).  
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Figure 4.2. Whole-cell Mössbauer spectroscopy of wild-type E. coli grown in M9 

glucose media with 1, 10 and 100 µM 57Fe(III)-citrate.  Spectra were collected at 5 K, 

0.05 T.  The green and black lines  through the spectra indicate the central doublet (Fe-S 

cluster) and NHHS content respectively. The red line is the best fit traced over the raw 

data (black). Cells were grown to exponential phase before harvested. 
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Table 4.1- Offline ICP Metal Concentrations and Mössbauer Percentages 

 Central Doublet %; µM Fe (II)A (O/N) %; µM Fe (II)B (S4) %; µM 

WT 1 69.3 28 3 

WT 10 45.6 49.4 5 

WT 100 8 90 1 

 

  



www.manaraa.com

123 
 

E.coli iron accumulation varies from yeast iron accumulation. 

In yeast cells, it has been proven that slower-growing cells accumulate more Fe 

than the faster growing ones. To compare this with the E. coli wild-type cells, we did a 

timed growth assay with the different 57ferric citrate concentrations in the media (Figure 

4.3). In the growth assay, both WT1 and WT10 had identical growth rates while the 

WT100 grew just a faction faster. The W10 and W100 had a higher final cell density than 

the W1.This shows that the E.coli cells have different iron speciation from yeast cells and 

different iron accumulation patterns.  

The ∆fur mutant has only one Fur independent Non High Heme Spin Fe (II) species.  

We prepared 3 ∆fur::kanᴿ samples, grown to exponential phase aerobically 

(OD600 approximately 0.5-0.6) with 1µM, 10 µM and 100 µM  57ferric citrate . These are 

designated Fur1, Fur10 and Fur100 respectively.  The ∆fur::kanᴿ strains contain 2-3 

times less iron than WT cells (Table 4.2)  for the same concentration of Fe in the growth 

medium (Figure 4.3). They contain a much smaller percentage change in Fe content as 

iron concentrations in the media increase. They also central doublet (Fe-S / LSH) signal 

compared to the WT samples. In contrast to the WT Mössbauer samples (Figure 4.1), the 

∆fur::kanᴿ  strains didn’t show such a variability in its NHHS Fe (II) speciation as its 

iron content increased in the media.   

Similar to the WT species, they contain both a NHHS Fe (II) species that is 

ligated primarily by oxygen donor ligands (majority species) and a  NHHS Fe (II) species 

that is ligated primarily by sulfur donor ligands (minority species). The ∆fur::kanᴿ strains 

also had similar growth rates that didn’t change in response to addition of ferric ion 
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Figure 4.3. Growth curves of the 3 wild-type strains in different iron concentrations 

were similar.  Cells were pre- grown in 0.2% glucose minimal media for 24 hours, and 

inoculated into fresh 0.2% glucose minimal media with different 57ferric citrate 

concentrations. Cells OD600 were then checked hourly. 
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in all the samples with the different strains (Figure 4.4) 

The ∆fur mutant has impaired Fe-S cluster assembly function.  

To further investigate if the ∆fur::kanᴿ  mutant had impaired Fe-S cluster 

assembly, we conducted a growth assay on the strain in Sodium acetate minimal media. 

Cells grown on acetate by-pass glycolysis to go through the glycoxylate shunt and Tri-

Carboxylic Acid (TCA) cycle for metabolism. The TCA cycle has enzymes that contain 

Fe-S cluster e.g. aconitase.  Acetate growth requires respiration for all cellular metabolic 

synthesis. The respiratory complexes I and II also contain many Fe-S clusters.  Any strain 

that has difficulty assembling Fe-S clusters will therefore show a dramatic growth 

phenotype in this media. We grew both the ∆fur::kanᴿ  mutant and the wild-type as a 

control. We initially grew the strains in 0.2% glucose minimal media for 24 hours and 

then  transferred to 0.4% sodium acetate minimal media. After 48 hours, the ∆fur mutant 

showed a severe growth defect in this media (Figure 4.5) and didn’t grow indicating that 

the ∆fur::kanᴿ  mutant strain has difficulty in making Fe-S clusters. 

4.4 Discussion 

We have attempted to characterize the iron pools Iin E. coli in both the wild type 

and a ∆fur::kanᴿ strain. Fur is known as a global regulator of iron so we wanted to 

observe the effects its deletion would have on the various iron pools in the organism. We 

tested this using mainly Mossbauer which is a technique that can identify iron speciation 

in vivo and also tell us the ligands they are bound too. We tested by adding a range of 

57ferric citrate concentrations to our strains ranging from minimal 1µM, to 10 µM 

(approximate concentration found in rich media) and 100 µM (excess).  
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   Table 4.2- Offline ICP Metal Concentrations and Mössbauer Percentages 

Central Doublet %; µM Fe (II)A (O/N) %; µM Fe (II)B (S4) %; µM 

WT 1 69.3 28 3 

WT 10 45.6 49.4 5 

WT 100 8 90 1 

Fur 1 28.4 60.7 9 

Fur 10 28.5 64.2 10.6 

Fur 100 25.1 58.3 8.7 
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Figure 4.4. Whole-cell Mössbauer spectroscopy of ∆fur::kanᴿ grown in M9 glucose 

media with 1, 10 and 100 µM 57Fe(III)-citrate.  Spectra were collected at 5 K, 0.05 T.  

The green and black lines through the spectra indicate the central doublet (Fe-S cluster) 

and NHHS content respectively. The red line is the best fit traced over the raw data 

(black). Cells were grown to exponential phase before harvested. 
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Figure 4.5. Growth curves of the ∆fur::kanᴿ  strains in different iron concentrations 

were similar.  Cells were pre- grown in 0.2% glucose minimal media for 24 hours, and 

inoculated into fresh 0.2% glucose minimal media with different 57ferric citrate 

concentrations. Cells OD600 were then checked hourly 
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Figure 4.6. The ∆fur::kanᴿ strain shows a defective growth phenotype in M9 acetate 

growth without stress. All strains were grown in M9 glucose minimal media for 24 

hours for 18 hours and then washed and normalized to same starting OD600 in fresh M9 

sodium acetate minimal media for 24 hours. Cell density was measured after 48 hours. 

All growths were repeated in triplicate (n=3) and error bars indicate one standard 

deviation from the mean value. 
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We have identified that wild type has two primary NHHS Fe (II) species: NHHS 

Fe (II)A pool coordinated to oxygen/nitrogen ligands and the NHS (II)B pool is 

coordinated to sulfur ligands. In the E. coli wild-type strain, the majority species is the 

NHHS Fe (II)A species, these are the  that are primarily ligated by oxygen/nitrogen donor 

ligands. This NHHS Fe (II)A is also divided into 2; one being fur-dependent and  the 

other is fur-independent. The fur-dependent Fe (II)A changes strongly as the 

concentration of Fe in the medium changes. The Fur-dependent Fe (II)A species is not 

well regulated. This species is present at extremely high concentrations in WT cells 

grown on 100 µM Fe, and weaker in WT cells grown on 10 µM Fe, and very weak in WT 

cells grown on 1 µM Fe. The Fur-dependent Fe (II)A species may primarily serve as 

feedstock for building Fe/S clusters and/or heme. The Fur-independent Fe (II)A species 

may be better regulated. The NHHS Fe (II)B species coordinated with primarily sulfur 

donors. This is the minority species. It seems Fur-independent and pretty well regulated.  

The ∆fur::kanᴿ train strain lso has two NHHS Fe (II) pools. Its NHH Fe (II)A 

pool however has just one Fur indepenedent NHHS Fe(II) species. It has defective Fe-S 

clusters than the WT. It showed an  increase in total Fe as more iron is added  to the 

media although th echange wasn’t as dramatic as in the wild-type  . Fur is a regulator and 

but may act as a chaperone in the cell. Fur may positively regulate the ligand for the “Fe 

dependent Fe(II) species” that is found in wild-type strain.  It may do this via the action 

of RyhB which it represses when bound to its iron promoter box upstream many Fe-S and 

Fe containg proteins. Therefore in the ∆fur::kanᴿ strain it may not be responsive to 

changes to iron. 

We also discovered that the ∆fur::kanᴿ strain definitely has an impairment in 
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forming Fe-S clusters. It showed up on the Mossbauer spectra and they couldn’t grow 

when forced to respire. This is likely explained by constittutive upreegulaion of ryhB in 

the ∆fur::kanᴿ strain, leading to targeted degradation of many mRNA for Fe-S enzymes 

(and also of  iscU- iscX mRNA). It mightr also be partialy explained by changes in iron 

speciation but that is not the only reason. 
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Appendix A – SUPPLEMENTAL EXPPERIMENTS AND RESULTS 

FepA transcripts differ based on carbon source 

We decided to assess the transcript levels of FepA (an integral bacterial outer 

membrane porin protein), with another carbon source: gluconate instead of glucose. To 

assess whether FepA is differentially regulated in different strains, we carried out primer 

extension assays to measure fepA transcript levels in cells exposed to high BIPY(250 

µM) and measured these levels in cells initially grown in nutrient rich (LB)  before being 

transferred to M9 gluconate minimal media (Figure A.1). 

Plasmid re-insertion didn’t rescue sensitive strain 

We re-inserted Bfr (pGS281::ampᴿ) and FtnA (pGS1096::ampᴿ) into the sensitive 

∆iscU-fdx∆bfr∆dps strain by P1 transduction to see if the growth phenotype would be 

rescued. We also inserted the plasmids into the parent ∆iscU-fdx strain to see if there 

would be any effect on the phenotype. All plasmids were obtained from Dr. Nick LeBrun 

lab from East Anglia. The Bfr plasmid insertion made both the sensitive ∆iscU-

fdx∆bfr∆dps and parent ∆iscU-fdx strains more sensitive (Figure A2). The FtnA insertion 

also made the parent ∆iscU-fdx strain more sensitive in higher BIPY stress (Figure A.2) 

Deletion of all the iron storage proteins shows no sensitivity to iron starvation and 

oxidative stress 

 We wanted to check the effect in a strain that had all iron storage proteins deleted. 
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Figure A.1. Transcriptional activity of FepA. Cells were grown in LB for 18 hours, 

then washed and transferred to M9 Glucoate minimal media to mid-log phase (0.5), some 

harvested as the control probe and the remaining induced for 1 hour with 250 µm BIPY 

for 1 hour. 
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Figure A.2. Bfr and FtnA Plasmid re-insertion didn’t rescue the sensitivity of the 

∆iscU-fdx∆bfr∆dps strain. Cells were grown in LB and then washed and transferred to 

M9 gluconate minimal media containing varying concentrations of BIPY. 
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In the ∆iscU-fdx∆bfr∆dps double mutant strain, we deleted both ftnA and ftnB  to 

construct the ∆iscU-fdx∆ftnA∆dps∆bfr ∆ftnB strain. This strain showed no sensitivity 

when stressed with iron starvation (Figure A.3). This strain also had rescued lag phase 

compared to the sensitive ∆iscU-fdx∆bfr∆dps phase (Figure A.4). We also checked the 

transcript levels of FepA in this strain both in LB (Figure A.5.i) and in M9 glucose 

minimal media (Figure A.5.ii). This ∆iscU-fdx∆ftnA∆dps∆bfr∆ftnB strain also had 

slightly lower DFO-accessible labile iron pool compared to the Wild-type and about 6x 

less levels compare to the sensitive ∆iscU-fdx∆bfr∆dps sensitive strain (Figure A.6).  

Mossbauer Analysis of samples shows that concentration of iron critical to iron 

components in the different strains. 

In the wild-type strain, the stationary cells with 100 µM Fe had nanoparticles 

(Figure A.7). In the ∆iscU-fdx strain, the 100 µM exponential spectrum was about twice 

as intense (Figure A8) About 90% of spectral intensity was due to Sites 1 (50%) and Site 

2 (40%) [δ = 1.28 mm/s; ∆EQ = 3.44 mm/s]. Both Sites 1 and 2 have increased in 

intensity. In Site 3, the central doublet was only 3% while a Sire 4 cannot be observed.  

The 100 µM spectrum exhibited the same major species as well as a sextet arising from a 

NHHS Fe(II)I species. The sextet was simulated using the following parameters [D = 0.2 

cm-1; E/D = 0.30; δ = 0.2 mm/s; ∆EQ = 1.1 mm/s; eta = 0.27; A = -206 gauss]; it 

represented 17% of spectral intensity. The spectral intensity also included a CD (19%), a 

NHHS Fe(II)(O/N)5-6 species (38%), the Fe(II)S4 species (3%) and Fe(II)I nanoparticles 

[δ = 0.55 mm/s; ∆EQ = 0.55 mm/s] at 28% spectral intensity. Compared to cells harvested 

under exponential conditions, some Fe in stationary state cells is present as a NHHS 

Fe(II)I 
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Figure A.3. Additional deletion of ftnA and ftnB rescues the sensitivity of the ∆iscU-

fdx∆bfr∆dps strain to bipyridyl.  All strains were grown in LB for 18 hours. After this, 

they were washed and inoculated into fresh 0.2% gluconate minimal media with varying 

concentrations of BIPY. The final cell density was measured after 24 hours. All growths 

were repeated in triplicate (n=3) and error bars indicate one standard deviation from the 

mean value. 
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Figure A.4. Additional deletion of ftnA and ftnB rescues the mild increase in lag 

phase duration in LB media with no stress of the ∆iscU-fdx∆bfr∆dps strain.  All 

strains were grown in LB media for 18 hours. After this, they were washed and 

inoculated into fresh 0.2% glucose minimal media and density was measured initially 

every 30 mins until they exited lag phase, and then hourly. All growths were repeated in 

triplicate (n=3) and error bars indicate one standard deviation from the mean value. 
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Figure A.5. Transcriptional activity of FepA. Cells were grown in (i) LB or (ii) M9 

Glucose minimal media to mid-log phase (0.5), some harvested as the control probe and 

the remaining induced for 1 hour with 250 µm BIPY for 1 hour. 

 

i 

ii 
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Figure A.6. Labile iron pools are lowest in the ∆iscU-fdx∆ftnA∆dps∆bfr∆ftnB strain. 

Intracellular, DFO-labile iron concentrations are calculated and  normalized to cell 

volume and number. 
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Figure A.7.  Mossbauer spectra (5K, 0.05T) of Wild-Type E. coli grown in glucose 

medium. (A) 10 µM Fe in the growth medium and harvested under exponential 

conditions. (B) 100 µM Fe in the medium and harvested under exponential conditions 

and (C) 100 µM Fe in the medium and harvested under stationary-state conditions. 

Spectrum A was simulated using four species including two nonheme high-spin (NHHS) 

Fe(II) doublets, both reflecting mononuclear Fe(II) complexes with 5-6 O/N donor 

ligands, a “Central Doublet due to S = 0 [Fe4S4]
2+ clusters and LS Fe(II) hemes 

combined, and a NHHS Fe(II) site with what appear to be four sulfur donor ligands 
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Table A.1. Parameters for Wild-type Mossbauer analysis 

Spectrum Site δ (mm/s) ∆EQ 

(mm/s) 
 Γ 
(mm/s) 

Area (%) 

WT10 µM 

(A) 
#1 Fe(II)(O/N)5-6 1.29 2.7 0.62 25 

 #2 Fe(II)(O/N)5-6 1.30 3.1 0.44 20 

 Central Doublet 0.44 1.05 0.55 46 

 Fe(II)(S)4 0.70 3.2 0.33 6 

      

WT100 µM 

(B) 
#1 Fe(II)(O/N)5-6 1.28 2.7 0.45 42 

 #2 Fe(II)(O/N)5-6 1.28 3.3 .64 29 

 Central Doublet 0.44 1.05 0.54 26 

 Fe(II)(S)4 0.71 3.1 0.30 3 

      

WT100 µM 

(C) 
#1 Fe(II)(O/N)5-6 1.26 2.7 0.56 10 

 #2 Fe(II)(O/N)5-6 1.30 3.4 0.43 10 

 Central Doublet 0.46 1.2 0.41 18 

 Fe(II)(S)4 0.7 (est) 3.2 (est) 0.3 (est) ~ 3 (est) 

 
Fe(II)I oxyhydroxide 

nanoparticles 
0.52 0.64 0.54 59 
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Figure A.8. Mossbauer spectra (5K, 0.05T) of E coli strain ∆iscU-fdx grown in 

glucose medium. (A) and (B) 10 µM Fe in the growth medium and harvested under 

exponential conditions. (C) 100 µM Fe in the medium and harvested under exponential 

conditions  and (D) 100 µM Fe in the medium and harvested under stationary-state 

conditions. The 10 µM exponential spectrum (A and B) exhibited three major features, 

including Sites #1 and #2: NHHS Fe(II) doublets both with parameters typical of 5-6 O/N 

ligands (called Fe(II)(O/N)5-6) [average: δ = 1.26 mm/s; ∆EQ = 2.92 mm/s], 54%. Site 3: 

“Central Doublet” due to S = 0 [Fe4S4]
2+ clusters and LS Fe(II) hemes combined) [δ = 

0.45 mm/s; ∆EQ = 1.15 mm/s], and an Fe(II)S4 species [δ = 0.7 mm/s; ∆EQ = 3.2 mm/s]. 

The intensity corresponds to 32%, which is significantly less than we saw in WT spectra. 

Site 4: 6% was due to Fe(II)S4.  
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species and also nanoparticles.   

In the ∆iscU-fdx∆bfr∆dps strain (Figure A.9), Spectra A and B (the 10 µM Fe 

exponential phase cells) are dominated by a NHHS Fe(II) (O/N)5-6 doublet with 

parameters [δ = 1.26 mm/s; ∆EQ = 2.96 mm/s]; this feature represents 58% of spectral 

intensity. The Central Doublet represented 27% and the Fe(II)S4 species represented 7%. 

The spectra look VERY similar to that of ∆iscU-fdx grown with 10 µM Fe and harvested 

at exponential phase. This implies that deleting bfr and dps had essentially no effect on 

the Fe content of the cell. Spectrum C has a 15% effect which is indicates that the 

concentration of Fe in the sample is very large. Best fits require 2 NHHS Fe(II) (O/N)5-6 

doublets, with [δ = 1.21 mm/s; ∆EQ = 2.8 mm/s and δ = 1.3 mm/s; ∆EQ = 3.4 mm/s].  

The first represents 36% and the second 61%. About 7% of spectral intensity is 

due to a sextet with parameters [D = 0.25 cm-1; E/D = 0.3; δ = 0.2 mm/s; ∆EQ = 0.78 

mm/s; eta = 2; A = -221 gauss]. There is also a broad shoulder on the right side which 

was more predominant than on spectra of the previous samples. Cells harvested under 

stationary state conditions exhibited Mossbauer spectra composed of 3 major species 

(and perhaps two minor ones). About 60% of spectral intensity was due to a NHHS 

Fe(II)(O/N)5-6 species with  [δ = 1.26 mm/s; ∆EQ = 3.07 mm/s]. The Central Doublet 

represented 16% of the spectral intensity.  A Non Heme High Spin Fe(II)I sextet 

represented 20% of spectral intensity. Simulations of this species required very similar 

parameters relative to that in the parent ∆iscU-fdx strain   = 0.25 cm-1; E/D = 0.33; δ = 

0.15 mm/s; ∆EQ = 0.96 mm/s; η = 0.27; A = -197 gauss]. It was also possible to include 

2% of the Fe(II)S4 species and 3% nanoparticles. The strain has more High Spin Fe and 

less nanoparticles compared to the parent ∆iscU-fdx strain. 



www.manaraa.com

146 
 

  

  

Figure A.9. Mossbauer spectra (5K, 0.05T) of E coli strain ∆iscU-fdx∆bfr∆dps grown 

in glucose medium. (A) and (B) had 10 µM Fe in the growth medium and harvested 

under exponential conditions (C) had 100 µM Fe in the medium and harvested under 

exponential conditions and (D) 100 µM Fe in the medium and harvested under stationary-

state conditions.  
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2% of the Fe(II)S4 species and 3% nanoparticles. The strain has more High Spin Fe and 

less nanoparticles compared to the parent ∆iscU-fdx strain. 

The ∆iscU-fdx∆ftnA∆dps∆bfr strain (Figure A.10) exponential phase cell strain 

grown with 10 µM Fe had a lower percent effect than the other samples. This included 

31% CD, 57% NHHS Fe(II)(O/N)5-6 [δ = 1.26 mm/s; ∆EQ = 2.9 mm/s], and 4% 

Fe(II)S4. The spectrum with 100 µM Fe had 3.3% effect, with a flat baseline (no sextet) 

and a hint of the broad shoulder. The NHHS Fe(II)(O/N)5-6 feature was fitted to 2 

doublets with [δ = 1.28 mm/s; ∆EQ = 2.8 mm/s (50%) and [δ = 1.23 mm/s; ∆EQ = 3.38 

mm/s] (28%). The CD represented 22% of the spectral intensity. Spectrum with 100 µM 

Fe at stationary phase exhibited a broad shoulder and a small Fe(II)I sextet (which 

represented 14% area). The parameters were [D = 0.25 cm-1; E/D = 0.30; δ = 0.25 mm/s; 

∆EQ = 1.1 mm/s; η = 2; A = -211 gauss]. The CD represented 25% of the spectral 

intensity. About 64% of spectral intensity was due to NHHS Fe(II) [δ = 1.27 mm/s; ∆EQ 

= 3.17 mm/s].   

In the ∆isc ∆bfr ∆ftnB strain (Figure A.11), for spectrum the 10 µM Fe spectrum, 

the NHHS Fe(II) doublet was 46%, the CD was 45%, and the FeS4 was 5%. Two sites 

were used to fit the NHHS Fe(II) [δ = 1.27 mm/s; ∆EQ = 2.5 mm/s  for site 1 (14%) and δ 

= 1.31 mm/s; ∆EQ = 3.07 mm/s for Site 2 (32%). For the 100 µM exponential Fe 

spectrum, the percent effect was huge (12%), and it was dominated by NHHS Fe(II). 

There is not much sextet and the unusual shoulder is intense. Two sites were used for the 

NHHS Fe(II) fit.  [δ = 1.24 mm/s; ∆EQ = 2.83 mm/s for site 1 (55%) and δ = 1.31 mm/s; 

∆EQ = 3.5 mm/s for Site 2 (26%).] The “weird shoulder” fit to [δ = 1.66 mm/s; ∆EQ = 4.2  
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Figure A.10. Mossbauer spectra of E. coli strain ∆iscU-fdx∆bfr∆dps∆ftnA grown in 

glucose media. Spectra (A) and B were grown with 10 µM Fe and harvested at 

exponential phase, (C) grown with 100 µM Fe and harvested at exponential phase and 

(D) was grown with 100 µM Fe and harvested at stationary phase.  
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Figure A.11. Mossbauer spectra of E. coli strain ∆iscU-fdx∆ftnB∆bfr grown in 

glucose media. Spectra (A) and B were grown with 10 µM Fe and harvested at 

exponential phase, (C) grown with 100 µM Fe and harvested at exponential phase and 

(D) was grown with 100 µM Fe and harvested at stationary phase. 
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mm/s, line width 0.85 mm/s]; it represented 19%. The stationary spectrum had more 

nanoparticles than the other samples, more similar to WT cells. No sextet was evident. 

Nanoparticles constituted 48% of the spectral intensity [δ = 0.505 mm/s; ∆EQ = 0.65 

mm/s] whereas the NHHS Fe(II) constituted 35% of spectral intensity. [δ = 1.3 mm/s; 

∆EQ = 3.3 mm/s]. The CD represented 13% of spectral intensity. 
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APPENDIX B – SUPPLEMENTAL EXPERIMENTS AND RESULTS 

Western Blot of FtnA in Wild-type and ∆fur cell strains 

We directly monitored FtnA protein expression by Western blot in the Wild-type 

and ∆fur cell strains  (Figure B1)that we analyzed by Mossbauer. These cells had varying 

concentrations of  57ferric citrate added to them. They were harvested at mid-log 

(exponential phase) between an OD600 of 0.5-0.6. The gel was run on a 15% SDS-PAGE 

gel. 

Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry (LC-ICP-

MS) of the wild-type and ∆fur::kanᴿ strains show different distinct peaks for their 

ligands.  

After Mössbauer spectroscopy, samples were brought into an anaerobic glove box 

and thawed for preparation for cell lysis and low molecular weight preparation of that cell 

lysate. This low molecular weight fraction was passed through a DB peptide column, and 

the various metal complexes coming off of the column and detected by the ICP-MS. 

Figures B1-B7 detail the traces of each samples Iron (Fe), Phosphorus (P), Sulfur (S), 

Copper (Cu), Zinc  (Zn), Manganese (Mn), and Cobalt (Co). All analyses were run by 

Joshua Wofford of Dr Paul Lindahl Lab, Texas A&M. 
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Figure B.1. FtnA expression slightly upregulated in higher iron concentrations in 

the Wild-type strain. Western blot analysis of equal amounts of total protein from wild-

type and ∆fur cell strains grown in M9 glucose minimal media with increasing 

concentrations of  57 Fe(III)-citrate addition using α-FtnA antibodies. 
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Figure B.2.  Iron LC-ICPMS on (A) wild type and (B) 10 µM ∆fur samples. Blue 

Line- 1 µM WT, Gold Line- 10 µM WT, Green Line- 100 µM WT, Red Line 10 µM 

∆fur, Orange Line- 10 µM WT (odd WT sample), Black line- First 10 µM WT. 

 

A
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Figure B.3.  Phosphorus LC-ICPMS Spectra. Blue Line- 1 µM WT, Gold Line- 10 µM 

WT, Green Line- 100 µM WT, Red Line 10 µM ∆fur::kanᴿ, Orange Line- 10 uM WT 

(odd 56 Fe), Black line- First 10 µM WT.  List of offsets, Blue= -.3 mL, Gold= .5 mL, 

Red= -.6 mL, Black= -.8 mL, Orange= -.3 mL. 
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Figure B.4. Sulfur LC-ICPMS on wild type and 10 µM ∆fur samples. Blue Line- 1 

µM WT, Gold Line- 10 µM WT, Green Line- 100 µM WT, Red Line 10 µM ∆fur, 

Orange Line- 10 µM WT (odd WT sample). 
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Figure B.5.  Copper  LC-ICPMS on wild type and10 uM ∆fur samples. Blue Line- 1 

µM WT, Gold Line- 10 µM WT, Green Line- 100 µM WT, Red Line 10 µM ∆fur, 

Orange Line- 10 µM WT (odd WT sample), Black line- First 10 µM WT. 
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Figure B.6.  Zinc LC-ICPMS on (A) wild type and (B) 10 uM ∆fur samples. Blue 

Line- 1 µM WT, Gold Line- 10 µM WT, Green Line- 100 µM WT, Red Line 10 µM 

∆fur, Orange Line- 10 µM WT (odd WT sample), Black line- First 10 µM WT. 
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Figure B.7.  Manganese LC-ICPMS on wild type and 10 uM ∆fur samples. Blue 

Line- 1 µM WT, Gold Line- 10 µM WT, Green Line- 100 µM WT, Red Line 10 µM 

∆fur, Orange Line- 10 µM WT (odd WT sample), Black line- First 10 µM WT. 
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Figure B.8.  Cobalt LC-ICPMS on wild type and 10 uM ∆fur samples. Blue Line- 1 

µM WT, Gold Line- 10 µM WT, Green Line- 100 µM WT, Red Line 10 µM ∆fur, 

Orange Line- 10 µM WT (odd WT sample), Black line- First 10 µM WT. 
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